Токи короткого замыкания.
Основные понятия
Коротким замыканием (КЗ) называется соединение токоведущих частей разных фаз или потенциалов между собой или на корпус оборудования, соединенный с землей, в сетях электроснабжения или в электроприемниках. КЗ может.быть по разным причинам: ухудшение сопротивления изоляции во влажной или химически активной среде, при недопустимом перегреве изоляции, механические воздействия, ошибочные воздействия персонала при обслуживании и ремонте и т. д.
Как видно из самого названия процесса, при КЗ путь тока укорачивается, т. е. он идет, минуя сопротивление нагрузки, поэтому он может увеличиться до недопустимых величин, если напряжение не отключится под действием защиты.
Но напряжение может не отключиться и при наличии защиты, если КЗ случилось в удаленной точке, и из-за большого сопротивления до места КЗ ток недостаточен для срабатывания защиты. Но этот ток может быть достаточным для загорания проводов, что может привести к пожару.
Отсюда возникает необходимость расчета тока короткого замыкания — ТКЗ. Величина ТКЗ может меняться, если к сети электроснабжения присоединяются другие электроприемники в более удаленных местах. В таких случаях снова производится расчет ТКЗ в месте установки новых электроприемников.
ТКЗ производит также электродинамическое действие на аппараты и проводники, когда их детали могут деформироваться под действием механических сил, возникающих при больших токах.
Термическое действие ТКЗ заключается в перегреве аппаратов и проводов. Поэтому при выборе аппаратов их нужно проверять по условиям КЗ, с тем чтобы они выдержали ТКЗ в месте их установки.
Как известно, наряду с сетями с глухозаземленной нейтралью существуют сети с изолированной нейтралью. Рассмотрим характерные отличия этих сетей при КЗ.
На практике в большинстве случаев происходят однофазные короткие замыкания. В сетях с изолированной нейтралью при соединении одной фазы с землей режим не является коротким замыканием и бесперебойность электроснабжения не
нарушается, но он должен быть отключен, так как соответствует аварийному состоянию.
При замыкании одной фазы на землю в данной сети напряжения на двух других фазах повышаются в 1,73 раза, а напряжение на нулевой точке становится равным фазному напряжению относительно земли, (рис. 4.2, в). В сетях с глухозаземленной нейтралью при соединении провода с землей сгорает предохранитель или срабатывает автоматический выключатель, при этом электроснабжение нарушается, а при сгорании предохранителя могут повредиться обмотки двигателей при работе на двух фазах. Расчет тока короткого замыкания Для расчета тока короткого замыкания можно пользоваться формулой
где Rп — активное сопротивление одного провода цепи КЗ, равное произведению удельного сопротивления провода на его длину (удельное сопротивление проводов в Ом/км приводится в справочниках), Xп — то же индуктивное сопротивление, рассчитывается по удельному индуктивному сопротивлению, которое принимается равным 0,6 Ом/км; Zt — полное сопротивление фазной обмотки трансформатора на стороне низкого напряжения, которое можно определить по формуле
где Uk%— напряжение короткого замыкания трансформатора, приводится в справочниках, Iн, Uн — номинальные ток и напряжение трансформатора, даются в справочниках. Отсюда полное сопротивление фазной обмотки трансформатора, Ом,
Как "оживить" электрических помощников
Как "оживить" электрических помощников
Kак выполнить ввод в здание? Какими приборами осуществляется учет электрической энергии? Какие применяют виды электропроводок и способы прокладки? Какие электрические аппараты применяют для защиты электрических сетей от токов короткого замыкания и перегрузки? Позиционные обозначения (Буквенные коды) элементов и установка на электрических схемах Условные графические обозначения электрического оборудования и проводок на планахKак выполнить ввод в здание?
Вводы воздушных линий электропередачи в здания делят на два участка: ответвление от воздушной линии до ввода — участок проводов от опоры ВЛ до ввода в здание; ввод в здание — участок от изоляторов на наружной стене здания до вводного устройства внутри здания. Если расстояние от опоры ВЛ до здания больше 10 м, то для ослабления натяжения проводов необходимо устанавливать подставную опору.
Ответвление от воздушной линии до ввода в строения длиной до 25 м, а также внутридворовые сети следует выполнять изолированными проводами или кабелем, проложенным на тросу или в земле. Сечение проводов в ответвлении должно быть не менее 6 мм^2 (при длине до 10 м не менее 4 мм^2) для меди и не менее 16 мм^2 для алюминия. Сечение жил кабеля — не менее 4 мм^2 для алюминия и 2, 5 мм^2 для меди. Расстояние от проводов ответвления до земли должно быть не менее 6 м, в проезжей части и внутри дворов не менее 3, 5 м, а
Рис. 37. Схема ответвлений от воздушной линии 0, 38 кВ и вводов в здания: 1 — ввод; 2 — ответвление; 3 — трубостойка; 4 — опора; 5 — дорога; 6 — дополнительная (подставная) опора; 7 — тротуар
расстояние от земли до изолятора ввода в здание — не менее 2, 75 м (рис. 37).
Ответвления от ВЛ выполняют также кабельными линиями. В этом случае кабель прокладывают по опоре до перехода его в траншею. От случайных механических повреждений кабель защищают трубой или другой конструкцией на высоту до 2 м.
Провода наружной электропроводки располагаются или ограждаются таким образом, чтобы они были недоступны для прикосновения. Провода, проложенные открыто горизонтально по стенам, должны находиться на расстоянии не менее: над балконом, крыльцом - 2, 5 м; над окном - 0,5 м;
под балконом - 1,0 м; под окном (от подоконника) - 1, 0 м; при вертикальной прокладке - до окна - 0, 75 м, а до балкона - 1, 0 м.
При подвеске проводов на опорах около зданий расстояние от проводов до балконов и окон должно быть не менее 1, 5 м.
Вводы через стены зданий получили широкое применение, они просты в исполнении, всегда находятся в поле видимости, удобны при обслуживании.
При вводе в здание изоляторы устанавливают на крюках (рис.38,б). Расстояние между проводами у вводов, а также расстояние от проводов до выступающих частей зданий должно быть не меньше 200 мм. Концевые крепления алюминиевых многопроволочных проводов марок А-25... А-50 выполняют плашечными зажимами типа ПАБ с оставлением конца провода длиной не менее 200 мм для подключения ввода (рис. 38, в). Допускается концевое
крепление проводов выполнять бандажной вязкой с соблюдением размеров и числа витков, указанных на рис. 38, г. Недопустимо присоединение провода ввода непосредственно к натянутому проводу
Рис. 38. Монтаж элементов ввода: а - конструкция прохода через стену; б — установка крюков и изоляторов; в — крепление провода к изолятору зажимом; г — крепление провода к изолятору вязкой; 1 — цементный раствор; 2 — проволока; 3 — крюк; 4 — изолятор; 5 — вязка; 6 — провод для присоединения ввода; 7 — зажим ОАС; 8 — провод ввода; 9 — зажим ПАБ; 10 — втулка;11 - трубка; 12 - цементно-алебастровый раствор; 13 - воронка ответвления, так как это способствует обрыву проводов ответвления. Вводы в здания выполняют только изолированными проводами. Каждый провод заключают в отдельную резиновую изоляционную трубку, как показано на рис. 38, а. На концы трубок с наружной стороны здания устанавливают фарфоровые воронки таким образом, чтобы они находились на одной оси и были разнесены одна от другой в кирпичных стенах на 50 мм, в деревянных стенах на 100 мм. Внутри здания на трубки надевают втулки. Отверстия в стене заделывают алебастровым или цементным раствором. Проходы через стены в трубках должны выполняться с уклоном наружу, таким образом, чтобы вода не могла скапливаться в проходе или попадать внутрь здания. После прокладки проводов входные отверстия воронок и втулок заливают изоляционной массой, битумом. Ввод в строение следует выполнять кабелем в негорючей оболочке сечением не менее 4 мм^2 для алюминия и 2, 5 мм^2 для меди или изолированными проводами тех же сечений. Вводы через трубостойки выполняют в тех случаях, когда высота здания не позволяет обеспечить установленные ПУЭ вертикальные габаритные размеры.
По способу закрепления и прохода внутрь здания трубостойки различают: ввод трубостойкой через стену; ввод трубостойкой через крышу. Ввод трубостойкой через стену (рис. 39) более удобен. При монтаже трубостоек следят за тем, чтобы нижний горизонтальный конец трубы был установлен с уклоном 5° наружу, в нижней точке изгиба просверливают отверстие диаметром 5 мм для выхода влаги. Ввод трубостойкой через крышу применяют в том случае, если расстояние от поверхности земли до низа трубостойки, устанавливаемой на стене, оказывается меньше 2 м. Особое внимание
. Рис. 39. Ввод трубостойкой через стену: 1 - крыша, 2 -оттяжка; 3 - изоляторы; 4 - трубостойка; 5 - болт зануления; 6 - кронштейн уделяют качеству монтажа прохода через кровлю и его гидроизоляции. Перед установкой в трубостойку затягивают стальную проволоку для последующего протягивания проводов. Верхний конец трубостойки двумя оттяжками из круглой стали диаметром 5 мм крепят к стене или к стропилам крыши. Все болтовые крепления вводов должны выполняться с применением пружинящих шайб, предохраняющих гайки от самооткручивания при раскачивании трубостоек и проводов ветром. Болтовые соединения смазывают защитной смазкой или техническим вазелином. Расстояние от самого нижнего проводника ввода через трубостойку до крыши должно быть не меньше 2, 5 м. Запрещается прокладывать голые или изолированные провода по крышам жилых домов. Вводы в здания кабелем. От опоры до стены здания кабель прокладывают в траншее глубиной 0, 7 м. В фундаменте здания пробивают отверстие для ввода кабеля. Ввод выполняют в трубе. Диаметр труб выбирают из расчета 1, 5—2 диаметра кабеля, но не меньше 50 мм. Укладывают трубы с уклоном наружу в траншею и гидроизолируют так, чтобы исключить попадание воды в здание. Глубина заложения труб не менее 0, 5 м. С внутренней стороны здания труба должна выступать на 50 мм, а с наружной на 600 мм от фундамента. В одной трубе прокладывают только один кабель. Если в здание вводится или выводится несколько кабелей, то число труб должно соответствовать их количеству.
Кабели, прокладываемые вдоль здания, должны размещаться в траншее не ближе 0, 6 м от фундамента. У ввода в здание в траншее всегда оставляют запас кабеля (примерно 1 м) на случай повторной разделки концов, который укладывают полукругом с радиусом 1 м (запрещается запас укладывать кольцами). Глубина заложения не менее 500 мм с обязательным покрытием кирпичом или бетонными плитами. Места выхода кабеля из трубы уплотняют раствором цемента с песком, глиной или кабельной пряжей, смоченной маслом. Kак изготовить трубостойку? Для трубостоек используют водогазопроводные трубы, внутренний диаметр которых из условий механической прочности должен быть не менее 20 мм при вводе двух проводов и не менее 32 мм -четырех. Верхний конец трубостойки загибают на 180°, чтобы в нее не могла попасть влага. К трубе под изгибом приваривают траверсу с двумя штырями для установки вводных изоляторов. Для траверс к трубостойкам диаметром 20 мм используют стальной уголок длиною 500 мм сечением 45х45х5. На трубостойке приваривают болт для зануления (соединения нулевой жилы с металлической трубой), который для предохранения от коррозии смазывают техническим вазелином. Острые края трубы обрабатывают напильником, чтобы не повредить о них изоляцию проводов при затягивании. Ближе к изгибу приваривают кольцо (гайку), в котором закрепляют проволочную оттяжку, для компенсации усилия натяжения проводов ответвления от воздушной линии. Внутреннюю поверхность трубы окрашивают.
Какие электрические аппараты применяют
Предохранитель — это простейший аппарат, защищающий электрическую сеть от коротких замыканий и значительных перегрузок. Предохранитель состоит из двух основных частей: фарфорового основания с металлической резьбой и смежной плавкой вставки (рис. 42, а) Плавкая вставка рассчитана на номинальные токи 10, 16, 20 А.
Вместо предохранителей могут применяться автоматические выключатели (автоматы). Включают автоматы вручную, а отключать можно вручную и автоматически, в результате срабатывания вмонтированных в корпус расцепителей.
Автоматы с тепловыми расцепителями предназначены для защиты от перегрузок. В качестве теплового расцепителя служит биметаллическая пластинка. При прохождении по ней тока перегрузки она изгибается и приводит в действие расцепляющий механизм, отключающий автомат.
Электромагнитный расцепитель состоит из катушки, сердечника и пружины. Автоматы с электромагнитным расцепителем служат для защиты от коротких замыканий. Ток короткого замыкания, проходя по катушке, содействует втягиванию внутрь ее сердечника, который сжимает пружину и приводит в действие расцепляющее устройство. Автоматы могут иметь тепловой или электромагнитный расцепитель или одновременно тот и другой, т. е. комбинированный. В осветительных сетях вместо предохранителей могут применяться резьбовые автоматические выключатели типа Пар 6, ЗА; 10А и 16А; 250 В (рис.42,б) и автоматические выключатели АЕ10 на 16А; 25А; 250В (рис. 42, в).
Рис. 42. Устройства защиты от токов короткого замыкания и перегрузок: а — предохранитель; б — резьбовой автоматический выключатель Пар; в — автоматический выключатель АЕ10; г — автоматический выключатель АП50Б; 1 — дугогасительная камера; 2 — электромагнитный расцепитель; 3—главные контакты; 4 и 5 — кнопки ручного включения и отключения; 6 — пластмассовое основание
Для защиты трехфазных электрических сетей применяют трехфазные автоматические выключатели серий АЕ20, АП50Б и др. Предпочтительным является применение автоматических выключателей серии АП50Б (рис. 42, г), так как контакты для подключения жил проводов или кабелей закрыты крышкой, что повышает электробезопасность при их обслуживании.
Автоматические выключатели АП50Б выпускаются с номинальными токами на 6, 3; 10; 16; 25 и 40 А. Для нормальной работы защитных аппаратов необходимо определить рабочий ток, по которому производится выбор плавкой вставки предохранителя и выбор выключателя. Для этого необходимо определить мощность потребителей, которые будет защищать этот аппарат. Принято считать, что при однофазной нагрузке на 1 кВт мощности приходится ток, равный 5 А; при трехфазной — на 1 кВт — 3 А. Зная нагрузку, определяют номинальный ток плавкой вставки или автоматического выключателя. Например, необходимо выбрать защиту для электропроводки в доме и для трехфазного электродвигателя мощностью 3 кВт. Определяем суммарную нагрузку в доме сложением, получаем 2, 2 кВт (2200 Вт). 2, 2 • 5 = 11 А. Номинальный ток плавкой вставки предохранителя или автомата должен быть больше тока рабочего. Выбираем плавкую вставку на 16 А или автомат АЕ с номинальным током на 16 А. Для электродвигателя: 3 • 3 == 9 А. Выбираем автомат АП50Б на 10 А. Более точный выбор пускозащитной аппаратуры изложен ниже. Kак выбрать плавкую вставку предохранителя? Токи плавких вставок для проводов осветительной сети выбирают по номинальному току Iл.вст>I ном При выборе плавких вставок для защиты асинхронных электродвигателей необходимо учитывать, что пусковой ток двигателя в 5—7 раз больше номинального. Поэтому выбирать плавкую вставку по номинальному току нельзя, так как она при пуске электродвигателя перегорит. Для асинхронных электродвигателей с коротко-замкнутым ротором при небольшой частоте включения и легких условиях пуска (tпуск=5—10с) номинальный ток плавкой вставки можно определить по выражению Iпл.вст> 0,4 Iпуск, где I — пусковой ток электродвигателя, А. При тяжелых условиях работы (частые пуски, продолжительность разбега до 40 с) Iпл.вст > (0,5 - 0,6) Iпуск Как выбрать автоматический выключатель? Автоматические воздушные выключатели применяют для защиты участков сети от коротких замыканий, перегрузок или снижений напряжения.
Их используют также для нечастых оперативных включений и отключений асинхронных короткозамкнутых электродвигателей. Конструкции автоматических выключателей различаются расцепителями — встроенными устройствами в виде защитных реле для дистанционного отключения. Различают расцепители максимального тока (электромагнитные или тепловые), минимального напряжения (нулевые) и независимые. Электромагнитные расцепители срабатывают практически мгновенно (за 0,02 с), тепловые отключают цепь в зависимости от длительности и силы тока, превышающего уставку теплового расцепителя. При наличии комбинированного расцепителя (то есть электромагнитного и теплового) выключатель мгновенно срабатывает при сверхтоках и с выдержкой времени от перегрузок, определяемой тепловым расцепителем. При снижениях напряжения до 70—30% номинального срабатывает расцепитель минимального, напряжения. Условия выбора автоматических воздушных выключателей сводятся к следующему: 1) номинальное напряжение выключателя должно соответствовать напряжению сети, то есть Uн.авт>Uc; 2) номинальный ток автомата должен быть равен рабочему или превышать его: Iн.авт>Ip ; 3) номинальный ток расцепителя автомата должен быть равен рабочему току (например, электродвигателя) или превышать его: Iн. расц> Ip; 4) правильность срабатывания электромагнитного расцепителя автомата проверяют из условия Iсраб.расц>1.25Imax Если применен автомат только с тепловым расцепителем, то по условиям надежной защиты от коротких замыканий необходимо последовательно с ним устанавливать также плавкие предохранители. Для чего предназначен магнитный пускатель ?
Магнитные пускатели (рис.43) предназначены для дистанционного управления электродвигателями и другими электроустановками. Они обеспечивают нулевую защиту, т.е. при исчезновении напряжения или при его снижении до 50 — 60% от номинального катушка не удерживает магнитную систему контактора и силовые контакты размыкаются. При восстановлении напряжения токоприемник остается отключенным.
Это исключает возможность аварий, связанных с самопроизвольным пуском электродвигателя или другой электроустановки. Пускатели с тепловыми реле осуществляют также защиту электроустановки от длительных перегрузок. Наибольшее распространение получили магнитные пускатели серий ПМЕ, ПМЛ и ПМА. Изготовляются эти серии в открытом, защищенном, пылеводозащищенном и пылебрызгонепроницаемом исполнении на напряжение 220 и 380 В. Они могут быть реверсивными и нереверсивными. Реверсивные пускатели наряду с пуском, остановом и защитой электродвигателя изменяют направление его вращения. В магнитные пускатели встраиваются тепловые реле ТРН (двухполюсные) и ТРЛ, РТИ (трехполюсные). Они срабатывают под влиянием протекающего по ним тока перегрузки электродвигателя и отключают его от сети. Маркировка магнитных пускателей расшифровывается следующим образом: первая цифра после сочетания букв, указывающих на тип пускателя, обозначает величину, которая соответствует определенному значению тока (0 — 6, 3 А; 1 — 10 А; 2 - 25 А; 3 - 40 А; 4 - 63 А; 5 - 80 А; 6 - 125 А); вторая — исполнение по роду защиты от окружающей среды (1 — открытое исполнение; 2 — защищенное; 3 —пылезащищенное; 4 — пылебрызгонепроницаемое), третья — исполнение (1 — нереверсивный без тепловой защиты; 2 — нереверсивный с тепловой защитой; 3 — реверсивный без тепловой защиты, 4 — реверсивный с тепловой защитой). Для чего применяется тепловое реле и как его выбрать? Тепловое реле (рис.43) применяют для защиты электродвигателя от перегрузок. Тепловое реле и номинальный ток теплового элемента, если нет особых требований к тепловой защите, выбирают с соблюдением следующих условий: максимальный ток продолжительного режима реле должен быть не менее номинального тока защищаемого двигателя; ток уставки реле должен быть равен номинальному току защищаемого двигателя или несколько больше (в пределах 5%); запас на регулировку тока уставки как в сторону увеличения, так и в сторону уменьшения должен быть наибольший. Для этого на шкале уставки оставляют одно-два свободных деления в обе стороны от положения регулятора, соответствующего выбранному току уставки. Для чего и как выполняют зануление? Зануление — основная мера защиты от поражения электрическим током в электроустановках напряжением до 1000 В с глухозаземленной нейтралью источника питания в случае прикосновения к металлическим корпусам электрооборудования и металлическим конструкциям, оказавшимся под напряжением вследствие повреждения изоляции сети или электроустановок. Всякое замыкание токоведущих частей на зануленные части превращается таким образом в однофазное короткое замыкание, что приводит к отключению аварийного участка сети. В качестве нулевых защитных проводников могут быть использованы нулевые рабочие проводники, специально предусмотренные проводники (четвертая или третья жила кабеля или провод сети, стальные полосы и т.п.), стальные трубы электропроводки, алюминиевые оболочки кабелей, металлические конструкции зданий, металлические кожухи шинопроводов, все трубопроводы, проложенные открыто, кроме трубопроводов для горючих и взрывоопасных смесей, канализации, центрального отопления и бытового водопровода.
По проводимости (сопротивлению) все перечисленные заземлители нулевых проводов должны удовлетворять требованиям ПУЭ. Устанавливать разъединяющие приспособления в цепях нулевых проводников запрещается, кроме тех случаев, когда одновременно отключаются и все токоведущие провода в установке. Для зануления однофазных бытовых электроплит следует делать ответвление от нулевого рабочего проводника (шины) этажного щитка на вво де, выполняемое отдельным проводом, площадь сечения у которого такая же, как у фазного. Этот провод должен подключаться к нулевому рабочему проводнику перед счетчиком до отключающего аппарата. При зануден и и трехфазных электроплит не разрешается использовать нулевой рабочий проводник в качестве зануляющего рабочего проводника. Для зануления светильников, вводы в которые выполняются защищенным проводом или незащищенными проводами в трубе (металлорукаве) или при скрытой проводке, делают ответвление от нулевого рабочего проводника внутри светильника. При вводе в светильник открытых незащищенных проводов для зануления корпуса светильника следует использовать гибкий провод (ответвление), присоединяемый с одной стороны к нулевому рабочему проводу на неподвижной опоре, а с другой — к заземляющему винту корпуса. В наружных установках и во взрывоопасных помещениях для зануления нужно использовать свободную жилу кабеля или свободный провод воздушной сети, присоединяемые к нулевому рабочему проводнику в ответвительной коробке, а в помещениях В-1 — в ближайшем групповом щитке. С целью выравнивания потенциала во всех помещениях и наружных установках, где выполнено зануление, все металлические конструкции трубопровода, корпуса оборудования и т.п. должны быть присоединены к сети зануления. Kак выполняют заземление? Заземляющее устройство состоит из заземлителя, заземляющих магистралей и заземляющих проводников. Различают два типа заземлителей: естественные и искусственные. К естественным заземлителям относятся металлические конструкции зданий и сооружений, надежно соединенные с землей. В качестве заземляющих проводников используют стальные трубы электропроводок, свинцовые и алюминиевые оболочки кабелей, металлические трубопроводы всех назначений, проложенные открыто.
Запрещается использовать для этой цели трубопроводы для горючих и взрывчатых смесей, а также служащие для автопоения скота. Использование голых алюминиевых проводников для прокладки в земле в качестве заземляющих проводников и заземлителей запрещается. Все естественные заземлители для большей надежности соединяют с заземляющими магистралями электроустановки не менее чем двумя проводниками, присоединенными к заземлителю в разных местах. Соединение выполняют вблизи от ввода в здание при помощи сварки или хомутов (для труб), контактную поверхность которых облуживают. Трубы в местах накладки хомутов зачищают. Места и способы присоединения проводников выбирают с учетом возможных ремонтных работ трубопроводов. При разъединении трубопроводов должно быть обеспечено непрерывное действие заземляющего устройства. Если естественные заземлители и заземляющие проводники отсутствуют или если они не обеспечивают необходимого нормированного сопротивления, тогда применяют искусственные заземлители. В качестве искусственных заземлителей применяют: трубы, угловую сталь, металлические стержни и т. п., горизонтально проложенные стальные полосы, круглую сталь и т. п. В случае опасности усиленной коррозии применяют омедненные или оцинкованные заземлители. Заземлители и заземляющие проводники, проложенные в земле, не должны иметь окраски. Монтаж наружного контура заземления начинают с разметки трассы и рытья траншей глубиной 0,6—0,8 м (ниже уровня промерзания грунта). Искусственные заземлители в виде отрезков стальных труб, круглых стержней или уголков длиной 3—5 м забивают в грунт так, чтобы головка электрода оказалась на глубине 0,5 м от поверхности. Заглубленные электроды соединяют друг с другом стальной полосой с помощью сварки. Места сварки покрывают разогретым битумом для защиты от коррозии. От заземлителей отводят магистраль заземления из стальных шин. Уложенные в траншеи заземляющие проводники и заземлители засыпают землей, не содержащей камней, строительного мусора, и плотно утрамбовывают.
Количество электродов заземляющего контура зависит в основном от удельного сопротивления почвы, длины и расположения электродов. Для получения сопротивления заземления до 10 Ом необходимо забить от 2 до 30 электродов. Соединение заземляющих проводников друг с другом и присоединение к конструкциям выполняют сваркой, а подключение к корпусам аппаратов, машин, и т. п. — болтовыми соединениями. При наличии вибрации применяют контргайки, пружинящие шайбы или иные средства против ослабления соединения. Сварочные швы выполняют длиной, равной двойной ширине проводника при прямоугольном сечении или шести диаметрам при круглом сечении. Соединяемые контактные поверхности болтовых соединений зачищают до металлического блеска и покрывают тонким слоем вазелина. Каждый заземленный элемент электроустановки присоединяют к заземляющей магистрали отдельным проводником. Последовательное соединение этих проводников запрещается. Заземляющие проводники, расположенные в помещениях, должны быть доступны для осмотра. Для предохранения от коррозии стальные голые провода окрашивают черной масляной краской. Как измерить сопротивление заземляющего контура? Для измерения сопротивления заземляющего контура применяют специальный прибор М416. Для грубых измерений сопротивления заземления зажимы 7 и 2 соединяют перемычкой и подключают прибор к измеряемому объекту по трехзажимной схеме (рис.44,а). При точных измерениях снимают перемычку с зажимов 1 и 2, подключают прибор к измеряемому объекту по четырехзажимной схеме. Эта схема позволяет исключить погрешность, которую вносят сопротивления соединительных проводов и контактов. Перед измерением регулируют прибор в такой последовательности. Ставят его горизонтально и переводят переключатель пределов измерения в положение «Контроль 5 Ом». Нажимают кнопку, вращением рукоятки прибора «Реохорд» устанавливают стрелку индикатора на нулевую отметку. На шкале реохорда должно быть показание 0,35—5 Ом при нормальных климатических условиях и номинальном напряжении источника питания.
Прибор располагают около измеряемого заземления. Стержни, образующие вспомогательный заземлитель R5 и потенциальный электрод R3(«Зонд»), устанавливают на расстояниях, данных на рисунке. Длина стержней в грунте должна составлять не менее 500 мм, обычно 1-1,5 м. Вспомогательный заземлитель и зонд выполняют в виде металлического стержня или трубы диаметром не менее 10 мм. При испытании заземляющих устройств с сопротивлением растеканию не менее 10 Ом сопротивления вспомогательного заземлителя прини-
Рис.44. Измерение сопротивления заземления: а—с помощью измерителя заземлений типа М416; б—по методу амперметра и вольтметра; 1 — заземлитель, сопротивление которого неизвестно; 2 — заземлитель зонда; 3 — вспомогательный заземлитель; 4 — сварочный трансформатор; V — вольтметр на 5—10 В; А — амперметр на 2,5 — 5 А мают не более 250 Ом. Если сопротивление растеканию заземляющего устройства находится в пределах 100—1000 Ом, сопротивление вспомогательного электрода должно быть не более 500—1000 Ом. Сопротивление зонда рекомендуется для всех случаев измерений не более 1000 Ом. При грунтах с высоким удельным сопротивлением измерения будут приближенными. Для повышения точности измерения уменьшают сопротивление вспомогательных заземлите-лей увлажнением вокруг них почвы и увеличением их количества. Дополнительные стержни забивают на расстоянии не менее 2—3 м друг от друга. Все стержни, образующие контур зонда или вспомогательного заземлителя, соединяют между собой электрически. Измерение проводят по схеме, приведенной на рисунке. Порядок измерения следующий. Переключатель прибора устанавливают в положение «х1» (умножить на один). Нажимают кнопку и, вращая ручку прибора «Реохорд», добиваются максимального приближения стрелки индикатора к нулю. Результат измерения отсчитывают по шкале реохорда. Если измеряемое сопротивление окажется больше 10 Ом, переключатель устанавливают в одно из положений х5, х20 или х100 и проделывают операции, указанные выше. Результат измерения находят как произведение показания шкалы реохорда на множитель. При отсутствии специальных приборов сопротивление заземляющего контура можно измерить методом амперметра-вольтметра (рис.44,б).
Для этого необходимо иметь источник переменного тока (электрически не связанный с сетью) и вольтметр на малые пределы измерения, но с большим внутренним сопротивлением. Фактическое сопротивление заземления определяют по формуле Rх=U/I; где U — показания вольтметра. В; I — показания амперметра, А. Замеры сопротивления заземляющего контура производят в периоды наименьшей проводимости почвы: зимой при наибольшем промерзании, летом во время наибольшего просыхания ее. Надежность заземления и его общее состояние проверяют при замерах не реже одного раза в год, а также после каждого капитального ремонта и длительного бездействия установки. Внешний осмотр состояния заземляющих проводников (шин) производят не реже одного раза в шесть месяцев, а в сырых и особо сырых помещениях — не реже одного раза в три месяца. Как выполнить молниезащиту здания? Основными средствами защиты зданий и сооружений от прямых ударов молнии являются молниеотводы, которые принимают на себя разряды и отводят в землю. Молниеотводы бывают тросовыми и стержневыми. Тросовые молниеотводы устанавливают главным образом на крышах зданий. Молние-приемником является трос, который соединяет две или несколько опор. Стержневые чаще всего устанавливают у наружных стен зданий и только в отдельных случаях — на крышах. Удар молнии принимает стержневой молниеприемник, крепящийся на опоре. Стержневой молниеотвод состоит из молниеприемника, который воспринимает удары молний, токоотвода, соединяющего молниеприемник с заземлителем, заземляющего устройства, служащего для отвода молнии в землю, и опоры. Для изготовления молниеприемников применяют стальные прутки диаметром 12 мм, полосы 35х3 мм, уголки 20х20х3 мм, газовые трубки диаметром 1/2 - 3/4 дюйма и др. Длину молниеприемников принимают от 300 до 1500 мм. Токоотводы выполняют из стали диаметром не менее 6 мм и полосы сечением 35 мм^2. Обычно для токоотводов применяют стальную проволоку (катанку). Части токоотвода соединяют между собой при помощи сварки или болтами. Площадь контакта должна быть не менее двойной площади сечения токоотвода.
Последние имеют более высокий энергетический КПД. Поэтому при переходе на люминесцентные или газоразрядные лампы можно при сокращенном расходе электроэнергии значительно повысить уровень освещенности рабочих мест. В интересах экономии энергии нужно автоматизировать и программировать продолжительность искусственного освещения. Для этих целей применяют реле времени, фотоэлементы, фотореле и регуляторы напряжения. Электроэнергию в осветительных установках можно экономить также за счет поддержания отражающих поверхностей в состоянии, соответствующем нормативным требованиям, используя новые химические препараты для мойки стекол, снижения уровня освещенности в нерабочих помещениях: тамбурах, коридорах, туалетах и т.п. В жилом секторе осветительные приборы следует включать только в том случае, когда это действительно необходимо. За счет этого можно сэкономить до 15% энергии. По возможности лампы накаливания следует заменить на люминесцентные. Вместо нескольких ламп небольшой мощности желательно пользоваться одной мощной лампой. В домах с централизованным теплоснабжением важно следить за тем, чтобы температура воздуха в жилых комнатах не превышала нормы. Нужно помнить, что повышение температуры на ГС в закрытом помещении связано с дополнительным расходом на отопление 3—5% электроэнергии. На расход энергии в домах влияет состояние их теплоизоляции. Из-за неутепленных окон и дверей помещения зачастую теряют до 40% теплоты. Подсчитано, что через неутепленную балконную дверь уходит столько же тепла, сколько и сквозь дырку диаметром 20 см.
Какие применяют виды электропроводок и способы прокладки?
Электропроводка — совокупность проводов и кабелей с относящимися к ним креплениями, поддерживающими защитными конструкциями и деталями.
Виды электропроводок
1. Открытая электропроводка — проложенная по поверхности стен, потолков и другим строительным элементам зданий и сооружений.
При открытой электропроводке применяются следующие способы прокладки проводов и кабелей: непосредственно по поверхности стен, потолков и т. п., на струнах, тросах, роликах, изоляторах, в трубах, коробах, гибких металлических рукавах, на лотках, в электротехнических плинтусах и наличниках, свободной подвеской и т. п.
Открытая электропроводка может быть стационарной, передвижной и переносной.
2. Скрытая электропроводка — проложенная внутри конструктивных элементов зданий и сооружений ( в стенах, полах, фундаментах, перекрытиях, а также по перекрытиям в подготовке пола, непосредственно под съемным полом и т. п.).
При скрытой электропроводке применяются следующие способы прокладки проводов и кабелей: в трубах, гибких металлических рукавах, коробах, замкнутых каналах и пустотах строительных конструкций, в заштукатуриваемых бороздах, под штукатуркой, а также замоноличиванием в строительной конструкции при их изготовлении.
Наружная электропроводка — проложенная по наружным стенам зданий и сооружений, под навесом и т. п., а также между зданиями на опорах (не более четырех пролетов длиной до 25 м каждый) вне улиц, дорог и т.п.
Наружная электропроводка может быть открытой и скрытой.
Какие провода и кабели применяют при монтаже электропроводок и подключении электрооборудования?
Провод — одна неизолированная или одна и более изолированных жил, поверх которых в зависимости от условий прокладки и эксплуатации может иметься неметаллическая оболочка, обмотка или оплетка волокнистыми материалами или проволокой.
Кабель — одна или более изолированных жил (проводников), заключенных, как правило, в металлическую или неметаллическую оболочку, поверх которой в зависимости от условий прокладки и эксплуатации может иметься соответствующий защитный покров, в который может входить броня.
Структура условного обозначения установочных проводов:
Шнур — две или более изолированных гибких или особо гибких жил сечением до 1, 5 мм2, скрученных или уложенных параллельно, поверх которых в зависимости от условий эксплуатации могут быть наложены неметаллическая оболочка и защитные покрытия. Шнур предназначен для подключения электрических бытовых приборов к электрической сети. Характеристики проводов и кабелей представлены в таблице 13. Таблица 13. Провода и кабели, применяемые в электропроводках
Марка | Сечение жил, мм2 | Число жил | Характеристика |
1 | 2 | 3 | 4 |
Провода | |||
АПВ | 2,5-120 | 1 | Провод с алюминиевой жилой и поливинилхлорйдной изоляцией |
АППВ | 2,5-6 | 2;3 | Провод с алюминиевыми жилами, поливинилхлоридной изоляцией, плоский, с разделительным основанием |
АППР | 2,5-10 2,5 | 2; 4 3 | Провод с алюминиевой жилой, не распространяющей горение резиновой изоляцией и разделительным основанием |
АПР | 2,5-120 | 1 | Провод с алюминиевой жилой, резиновой изоляцией, в оплетке из хлопчатобумажной пряжи, пропитанной противогнилостным составом |
АПРН | 2,5-120 | 1 | Провод с алюминиевой жилой и резиновой изоляцией, в негорючей резиновой оболочке |
АМПВ | 1-10 | 1 | Провод с алюминиевой жилой и поливинилхлоридной изоляцией |
АМППВ | 1,5-6 | 2;3 | То же, но плоский с разделительным основанием |
ПВ-1 | 0,5-95 | 1 | Провод с медной жилой и поливинилхлоридной изоляцией |
ПВ-2 | 2,5-95 | 1 | То же, но гибкий |
ППВ | 0,75-4 | 2,3 | Провод с медными жилами, поливинилхлоридной изоляцией, плоский, с разделительным основанием |
1 | 2 | 3 | 4 |
ПР | 0,75-120 | 1 | Провод с медной жилой, резиновой изоляцией, в оплетке из хлопчатобумажной пряжи, пропитанной противогнилостным составом |
ПРГ | 0,75-120 | 1 | Провод гибкий, с медной жилой, резиновой изоляцией, в оплетке из хлопчатобумажной пряжи, пропитанной противогнилостным составом |
ПРГИ | 0,75-120 | 1 | Провод с медной гибкой жилой и резиновой изоляцией, обладающей защитными свойствами |
ПРИ | 0,75-120 | 1 | Провод с медной жилой и резиновой изоляцией, обладающей защитными свойствами |
Кабели | |||
АВВГ | 2,5-50 | 1; 2; 3; 4 | Кабель силовой, с алюминиевыми жилами, поливинилхлорйдной изоляцией, в поливинилхлоридной оболочке |
АВРГ | 4-300 2,5-300 | 1 2;3;4 | Кабель с алюминиевыми жилами, резиновой изоляцией, в поливинилхлорйдной оболочке (без покровов) |
АНРГ | 4-300 2,5-300 | 1 2; 3,4 | Кабель с алюминиевыми жилами, резиновой изоляцией, в резиновой маслостойкой и негорючей оболочке (без покровов) |
АПВГ | 2,5-50 | 1;2;3; 4 | Кабель силовой, с алюминиевыми жилами, полиэтиленовой изоляцией, в поливинилхлоридной оболочке |
ВВГ | 1,5-50 2,5-50 | 1;2;3 4 | Кабель силовой, с медными жилами, поливииилхлоридной изоляцией, в поливинилхлоридной оболочке |
ВРГ | 1-240 | 1;2;3; 4 | Кабель с медными жилами, резиновой изоляцией, в поливинилхлоридной оболочке |
НРГ | 1-240 | 1;2;3; 4 | Кабель с медными жилами, резиновой изоляцией, в резиновой маслостойкой и негорючей оболочке |
пвг | 1,5-50 | 1;2;3; 4 | Кабель силовой, с медными жилами, полиэтиленовой изоляцией, в поливинилхлоридной оболочке |
Kак определить сечение жил проводов и кабелей для питания электрооборудования? Сечение проводов и кабелей напряжением до 1000 В определяют исходя из двух условий: 1) по условию нагревания длительным расчетным током Iдоп > Iр, где Iдоп — длительно допустимый ток для принятого сечения провода или кабеля и условий его прокладки. Приводятся данные в ПУЭ или справочной литературе, Ip — расчетный ток, А; 2) по условию соответствия сечения провода аппарату защиты Iдоп > Кз • Iн.пл, где Кз - коэффициент защиты; Iн.пл. — номинальный ток плавкой вставки, А. Кз = 1,25 при защите проводников с резиновой и пластмассовой изоляцией во взрыво- и пожароопасных, торговых и т.п. помещениях плавкими предохранителями и автоматическими выключателями; при защите этих же проводников в невзрыво- и непожароопасных помещениях Кз = 1,0. Осветительные проводки дополнительно рассчитывают на потерю напряжения. Допустимые длительные токовые нагрузки на провода и кабели, а также выбор пусковой и защитной аппаратуры, проводов и кабелей для отдельно устанавливаемых электродвигателей находят по справочникам. Kак выбрать марку провода или кабеля для электропроводки? Способы выполнения электропроводок в различных условиях определяются ПУЭ, а рекомендуемые при этом марки проводов и кабелей — Руководством по выбору и применению проводов для силовых и осветительных сетей, а также Едиными техническими указаниями по выбору и применению электрических кабелей. Таблица 14. Марки проводов и кабелей в зависимости от вида и способа прокладки электропроводок
Рекомендуемые марки проводов и кабелей для различных помещений в зависимости от вида электропроводок и способа их прокладки приведены в таблице 14. Kак зависят вид и способ электропроводки от характера помещений? В сухих отапливаемых помещениях (жилых комнатах, отапливаемых складах, подсобных помещениях, где относительная влажность не превышает 60%) разрешаются все виды проводок. В сухих неотапливаемых и влажных помещениях (к последним относятся помещения, где пары или конденсирующаяся влага выделяются лишь временно в небольших количествах и где относительная влажность больше 60%, но не превышает 75%: кухни в жилых помещениях, лестничные клетки, неотапливаемые склады и т.
п.) запрещены, скрытые проводки в изоляционных трубках. В пыльных помещениях ( выделяемая по технологическим условиям пыль может оседать на проводах, проникать внутрь машин и аппаратов) разрешена открытая проводка изолированными проводами в изоляционных трубках с тонкой металлической оболочкой, открытая и скрытая проводки изолированными проводами в стальных трубах, кабелем. К сырым относятся помещения, где относительная влажность длительно превышает 75%: овощехранилища, туалеты. К особо сырым относятся помещения с относительной влажностью воздуха до 100%, когда потолок, стены, полы и предметы, находящиеся в помещении, покрыты влагой. Особо сырыми являются теплицы, парники, наружные установки под навесом, в сараях, в неотапливаемых временных помещениях. Здесь возможна открытая или скрытая проводка изолированными защищенными или незащищенными проводами в трубах, кабелем. Есть много помещений особо сырых с химически активной средой: помещения, где содержатся животные. В таких помещениях выполняют открытые или скрытые проводки изолированными защищенными или незащищенными проводами в трубах или кабелем. В пожароопасных помещениях выполняют открытые проводки изолированными проводами на изоляторах или в трубах, скрытые - изолированными проводками в стальных трубах, кабелем. К взрывоопасным относятся хранилища нефтепродуктов. Здесь все проводки (открытые и скрытые) монтируют изолированными проводами в стальных трубах; разрешена открытая прокладка небронированных кабелей с резиновой изоляцией в свинцовой или поливинилхлоридной оболочке для осветительных сетей при напряжении не более 250 В по отношению к земле при отсутствии механических и химических воздействий. Kак выполнить монтаж внутренней электропроводки плоскими проводами? Скрытые электропроводки плоскими проводами выполняют: по несгораемым основаниям, подлежащим затирке или покрываемым мокрой штукатуркой (соответственно в заштукатуриваемой борозде или под штукатуркой), по сгораемым основаниям, покрываемым мокрой штукатуркой, стенам и перегородкам (под слоем штукатурки с подкладкой под провод слоя листового асбеста толщиной не менее 3 мм или по намету штукатурки толщиной не менее 5 мм; асбест или намет штукатурки укладывают поверх дранки, которая может быть вырезана по ширине асбестовой прокладки и выступать не менее чем на 10 мм с каждой стороны провода); в каналах и пустотах строительных конструкций; закладкой в несгораемые строительные конструкции при изготовлении их на заводах строительной индустрии.
Запрещается прокладка и монтаж плоских проводов при температуре ниже -15°С. Горизонтальную прокладку проводов по стенам осуществляют, как правило, параллельно линиям пересечения стен с потолком на расстоянии 100—200 мм от потолка или 50—100 мм от карниза или балки. Магистрали штепсельных розеток рекомендуется прокладывать по горизонтальной линии. Спуск и подъем проводов к светильникам, выключателям и штепсельным розеткам выполняют по вертикальным линиям. По перекрытиям плоские провода прокладывают по кратчайшим расстояниям между ответвительными коробками и светильниками, в местах, где исключена возможность их механического повреждения, или в каналах плит. Запрещается прокладка плоских проводов пакетами или пучками. Пересечения плоских проводов между собой следует избегать. При необходимости пересечения изоляцию проводов в этом месте усиливают тремя-четырьмя слоями прорезиненной или поливинилхлоридной липкой ленты или изоляционной трубкой. Расстояние от открыто проложенных внутри зданий проводов и кабелей, а также от соединительных коробок скрытых проводок до стальных трубопроводов при параллельной прокладке должно быть не менее 100 мм, а при пересечении не менее 50 мм. Расстояние до трубопроводов с горючими жидкостями и газами соответственно не менее 400 и 100 мм. При повороте трассы проводки на угол 90° в плоскости стены и потолка плоские провода изгибают по плоской стороне на угол 90° без разрезания разделительной пленки (при этом жилы не должны плотно прилегать друг к другу) или разрезают посредине разделительную пленку вдоль провода и одну жилу отводят внутрь угла в виде полупетли. При скрытой прокладке в бороздах или пазах плоские провода в отдельных местах «примораживают» алебастровым раствором или прикрепляют скобками, хомутиками из пластмассы, резины, хлопчатобумажной ленты. Запрещается при любом способе скрытой прокладки крепление плоских проводов непосредственно гвоздями. Соединение и ответвление плоских проводов выполняют сваркой, опрессовкой, пайкой или зажимами в ответвительных коробках. При скрытой прокладке допускается выполнять ответвление плоских проводов во вводных коробках выключателей, штепсельных розеток и светильников. В несгораемьк стенах и перекрытиях сухих и влажных помещений в качестве ответвительных коробок могут использоваться гнезда (ниши) с гладкими стенками, закрытые крышками. Присоединения и ответвления плоских проводов, прокладываемых скрыто, выполняют с запасом провода длиной не менее 50 мм. В металлических коробках и местах ввода плоских проводов устанавливают втулки из изолирующего материала или на провод дополнительно накладывают три-четыре слоя изоляции из прорезиненной или липкой поливинилхлоридной ленты. На проводах, подключаемых к зажимам выключателей, штепсельных розеток, настенных патронов, разделительную пленку удаляют лишь на участке, необходимом для присоединения. Технологический процесс монтажа внутренней проводки условно делят на две стадии: подготовительную и основную. Во время подготовительной стадии выполняют разметочные и заготовочные работы, во время основной прокладывают провода и выполняют необходимые соединения. Разметочные работы выполняют непосредственно на объекте монтажа.
Они позволяют уточнить трассы проводок и проходов последних через стены и междуэтажные перекрытия, трассы заземлений, места пересечения линий проводки между собой и с трубопроводами различного назначения, места крепления светильников, выключателей, штепсельных розеток, проводов или труб, в которых прокладывают провода, а также места установки коробок. Заготовочные работы заключаются в пробивке сквозных и гнездовых отверстий, в подготовке борозд для обхода препятствий, в установке закладочных частей, крепежных и изолирующих опор и деталей, в прокладке труб и трубок для проводов. Прокладка проводов предусматривает: правку проводов путем протягивания провода через сухую тряпку, зажатую в руке; заготовку концов проводов и протягивание их в коробки; прокладку проводов по стенам с «примораживанием» их алебастровым раствором. Прозвонку выполняют после затвердевания алебастрового раствора в местах крепления проводов и коробок. Как выполнить монтаж проводок в трубах? Электропроводки в трубах выполняют с целью их защиты от механических повреждений или от воздействия окружающей среды (например, сырость, взрывоопасные смеси, химически активные газы). Для электропроводок применяют: стальные обыкновенные водогазопроводные трубы; полиэтиленовые и полипропиленовые трубы; винипластовые трубы; металлические гибкие провода. Работы по монтажу электропроводок в трубах выполняют в две стадии. Сначала отмечают расположение концов труб, подходящих к щитам, электроприемникам, аппаратам управления. Затем размечают трассы электропроводок, места установки коробок, углы поворотов, точки крепления. Стальные трубы сначала осматривают, отбраковывают мятые, выправляют гнутые; очищают от грязи, ржавчины металлической щеткой; окрашивают внутри и снаружи. Затем трубы размечают и режут ножовкой; нарезают резьбу; снимают заусенцы напильником. Диаметр труб для конкретной электропроводки зависит от количества прокладываемых проводов (кабелей) и их диаметра. Пластмассовые трубы изгибают только в горячем состоянии при температуре 100—130°С.
Неметаллические трубы используют для электропроводок только в помещениях, в которых максимальная температура окружающей среды не превышает 60°С. Электропроводки в трубах должны монтироваться с учетом условий окружающей среды. Трубы укладывают с уклоном (не нормируется), чтобы не собиралась конденсирующая влага. Соединение труб во взрывоопасных и пожароопасных зонах, в наружных установках, во влажных, сырых и особо сырых помещениях, а также при скрытой прокладке выполняют только на резьбе с паклей и суриком. Все металлические элементы должны быть защищены от коррозии. Металлические части электропроводок в трубах зануляют или заземляют. Зануление и заземление электропроводок выполняют гибкой медной перемычкой от трубы к корпусу или через трубу заземляющими гайками. Перед затягиванием проводов трубопроводы проверяют и продувают воздухом. В трубы затягивают стальную проволоку диаметром 1, 5-3, 5 мм с петлей на конце. Провода выравнивают, протягивая их через зажатую сухую тряпку, присоединяют к проволоке и затягивают два человека в рукавицах — один тянет проволоку, другой с противоположной стороны подает провода в трубу. В коробках и у концов труб оставляют запас провода для присоединения. Соединение проводов делают только в коробках (в трубах соединять запрещено) и тщательно изолируют. Затем испытывают сопротивление изоляции проводов между собой и между каждым проводом и землей (трубой), норма не менее 0, 5 МОм. Kак выполнить монтаж троссовых проводок(на струнах)? Тросовыми называют электропроводки, у которых провода или кабели укреплены на натянутом несущем стальном тросе. Тросовые электропроводки применяют в хозяйственных постройках и в наружных установках как для осветительных, так и для силовых сетей. Проводки с креплением проводов и кабелей непосредственно к натянутому тросу или проволоке выполняют незащищенными проводами марок АПВ, АПРВ, ПВ и другими, а также кабелями -АВРГ, АВВГ, ВРГ и др. В качестве несущего троса рекомендуют использовать многопроволочные оцинкованные тросы диаметром 3—6, 5 мм.
Трос крепят к строительным основаниям с помощью крюков и натягивают с помощью натяжной муфты. Крепление проводов и кабелей к тросу выполняют стальными полосками с пряжками или пластмассовыми перфорированными лентами. Расстояние между креплениями не более 500 мм. Ответвительные коробки для присоединения светильников к проводам и кабелям крепят при помощи скоб непосредственно к тросу. Для ответвления от тросовых проводов устанавливают специальные тросовые коробки типа У-245. Ответвление проводов в коробке выполняют только ответвительными сжимами без разрезания провода. Светильники подвешивают к коробкам на подвесах. Подвешивать светильники на проводах не допускается. Несущий трос зануляют в двух точках на концах линий — соединением троса и нулевого провода гибкой перемычкой. По завершении монтажа до установки ламп в светильники измеряют сопротивление изоляции электропроводки (норма 0, 5 МОм). Разновидность тросовых проводок — струнные электропроводки. Струну изготавливают из стальной проволоки диаметром 2—4 мм. Ее закрепляют вплотную к строительным основаниям, например, привариванием к закладным деталям или пристреливанием. Струнные проводки применяют для монтажа проводов по железобетонным стенам, балкам и другим конструкциям, где крепление проводок другими способами затруднено. Kак выполнить электропроводку в чердачных помещениях ? Обособленную группу представляют электропроводки в чердачных помещениях, к которым относят непроизводственные помещения между верхним этажом здания или потолком и крышей здания, имеющие несущие конструкции из сгораемых материалов (например, кровлю, фермы, стропила, балки и т. п.). Если в таких помещениях несущие конструкции изготовлены из несгораемых материалов, их не рассматривают как чердачные. Чердачные помещения в большинстве случаев малодоступны для осмотра и обладают повышенной пожарной опасностью. Поэтому чердачные электропроводки имеют свои особенности. В чердачных помещениях применяют как открытые, так и скрытые электропроводки.
Открытые электропроводки, выполненные проводами и кабелями с медными жилами, прокладывают в трубах на любой высоте, а выполненные проводами и кабелями с алюминиевыми жилами - в стальных трубах или несгораемых стенах и перекрытиях, а также в производственных зданиях сельскохозяйственного назначения со сгораемыми перекрытиями. Стальные трубы соединяют друг с другом ответвительными коробками и аппаратами на резьбе, что препятствует проникновению пыли внутрь электропроводки. Защищенные провода и кабели в оболочках прокладывают по несгораемым или трудносгораемым стенам и перекрытиям на любой высоте, незащищенные изолированные одножильные провода — на изоляторах на высоте не менее 2, 5 м (при прокладке на высоте до 2, 5 м провода защищают от прикосновения к ним и механических повреждений). Скрытые электропроводки прокладывают в стенах и перекрытиях из несгораемых материалов на любой высоте. Выключатели, переключатели и другие коммутационные аппараты в цепях токоприемников устанавливают за пределами чердачных помещений. При монтаже открытых электропроводок незащищенные одножильные провода прокладывают на роликах в сухих и влажных помещениях, а на изоляторах и роликах больших размеров (для сырых мест) — в помещениях всех видов и наружных установках. При этом на роликах для сырых мест допускается применять электропроводки под навесами или в других аналогичных условиях, исключающих попадание на них дождя или снега. Кабели в неметаллической и металлической оболочках прокладывают непосредственно на поверхности стен, потолков и на струнах, полосах и других незащищенных конструкциях в наружных установках, незащищенные и защищенные одно- и многожильные провода и кабели в неметаллической и металлической оболочках — непосредственно на поверхности стен, потолков и на струнах, полосах и других несущих конструкциях в помещениях всех видов. Специальные провода с несущим тросом, незащищенные и защищенные одно- и многожильные провода и кабели в металлической и неметаллической оболочках прокладывают на тросах в помещениях всех видов.
Для прокладки в наружных установках используют только специальные провода с несущим тросом или кабели. Скрытые электропроводки, как правило, должны быть сменяемыми. Незащищенные провода допускается замоноличивать в строительные конструкции при их изготовлении (или непосредственно на монтаже) для сухих, влажных и сырых помещений. Незащищенные и защищенные одно- и многожильные провода, а также кабели в неметаллической оболочке прокладывают в неметаллических трубах из сгораемых материалов, например из несамозатухающего полиэтилена (исключение составляют изоляционные трубы с металлической оболочкой, стальные трубы и глухие короба с толщиной стенок 2 мм и меньше в сырых, особо сырых помещениях и наружных установках), в замкнутых каналах строительных конструкций, под штукатуркой и помещениях всех видов и наружных установках. Открытыми и скрытыми электропроводками могут быть незащищенные и защищенные одно- и многожильные провода, кабели в неметаллической оболочке, прокладываемые в металлических гибких рукавах, стальных трубах и глухих стальных коробах, неметаллических трубах и глухих коробах из трудносгораемых материалов, а также в изоляционных трубах.
Какими приборами осуществляется учет электрической энергии?
Учет израсходованной электрической энергии осуществляется счетчиком электрической энергии. В электроустановках промышленной частоты тока применяют счетчики индукционной системы.
Счетчики электрической энергии в зависимости от их конструкции, назначения и схемы включения изготавливают различных типов и маркируют буквами и цифрами, которые означают: С— счетчик; А—активной энергии; Р—реактивной энергии; О—однофазный; 3 и 4—для трехпроводной или четырехпроводной сети; У—универсальный;
И—индукционной измерительной системы; три следующие цифры характеризуют конструктивное исполнение счетчика. Буквы после них означают:
П—прямоточный (для включения без трансформаторов тока), Т— в тропическом исполнении, М— модернизированный. Например, СА4-И672М 380/220 В —счетчик активной энергии трехфазный, индукционной измерительной системы, модернизированный на линейное напряжение 380 В ток в сети 5А.
Учет электроэнергии однофазного тока производится с помощью однофазных счетчиков (рис. 40), а трехфазного тока — с помощью трехфазных счетчиков. В сетях 220 В, в которых предусматривается длительная работа в режиме неравномерных нагрузок фаз, следует применять трехэлементные четырехпроводные счетчики.
Класс точности счетчиков электроэнергии — 2. Счетчики должны быть непосредственного включения и иметь пломбу с клеймом госповерителя давностью на момент установки не более:
Рис. 40. Общий вид и подключение однофазного счетчика:
Ф — фазный провод; N — нулевой провод
трехфазные — 12 месяцев, однофазные — 2 лет. В жилых зданиях квартирного типа следует устанавливать один однофазный счетчик на каждую квартиру.
В жилых домах, принадлежащих гражданам на правах личной собственности, допускается установка трехфазных счетчиков по специальному разрешению энергоснабжающей организации, при этом на осветительную нагрузку устанавливается однофазный счетчик.
Подключение счетчиков в сеть производится в соответствии с принятой схемой (на внутренней стороне крышки зажимной коробки), соблюдая последовательность фаз.
Какие требования необходимо соблюдать при подключении счетчиков?
Приборы учета расхода электроэнергии устанавливаются на высоте 1, 4—1, 7 м от пола.
Тип и количество устанавливаемых электросчетчиков в частных владениях граждан определяются проектом и зависят от вида тарифа на потребляемую энергию. Перед трехфазным счетчиком обязательно устанавливают отключающий аппарат (рубильник, автоматический или пакетный выключатель и т. п.). Приборы учета, отключающие аппараты и при необходимости другие устройства должны быть опломбированы. Приборы учета рекомендуется устанавливать в отапливаемом помещении, в противном случае предусматривается подогрев счетчика в зимнее время. При монтаже электропроводки для присоединения счетчиков около счетчиков необходимо оставлять концы длиной не менее 120 мм. Оболочка нулевого провода на длине 100 мм перед счетчиком должна иметь отличную окраску или специальную метку. В электропроводке к счетчикам паек не допускается. Сечения проводов и кабелей, присоединяемых к счетчикам, должны быть не менее 4 мм^2 для алюминия и 2, 5 мм^2 для меди. Для безопасной установки и замены счетчиков должна предусматриваться возможность отключения счетчика установленными до него коммутационным аппаратом или предохранителями. Снятие напряжения должно предусматриваться со всех фаз, присоединяемых к счетчику. При трехфазном вводе автоматические выключатели, магнитные пускатели, электросчетчики, а также другую защитную и пусковую аппаратуру рекомендуется помещать в шкафу. Шкаф должен быть металлический, жесткой конструкции, исключающий вибрацию и сотрясение аппаратуры, а также иметь уплотнения, исключающие попадание влаги. Конструкции и размеры шкафов, ниш, щитков и т. п. должны обеспечивать удобный доступ к зажимам счетчиков и трансформаторов тока. Кроме того, должна быть обеспечена возможность удобной замены счетчика и установки его с уклоном не более 1°. Конструкция крепления должна обеспечивать возможность установки и съема счетчика с лицевой стороны. Kак выполнить монтаж группового щитка? Однофазные счетчики устанавливаются на металлических щитках. Квартирные щитки предназначены для распределения электрической энергии, защиты от перегрузок, токов короткого замыкания, а также для учета электроэнергии. Квартирные щитки типа ЩК-9...
ЩК-12 выпускают с резьбовыми предохранителями или автоматическими выключателями типа Пар (рис. 41, а). Квартирные щитки типа ЩК-13... ЩК-16 выпускают с автоматическими выключателями типа АЕ10 (рис. 41, 6). Щитки поставляются в продажу без счетчиков, которые приобретаются дополнительно. Щиток монтируют после устройства ввода и выполнения внутренней электропроводки. Сверху щитка имеются четыре заводские наметки, одну из которых открывают для ввода проводов комнатной электропроводки. Два одножильных провода с предварительно надетыми изоляционными трубками оконцовывают колечком и подключают к нижним зажимам предохранителей. Вторые концы их выводят на лицевую панель через второе и четвертое отверстия в щитке для подключения к счетчику. Провода ввода выводят через первое (фазный) и третье (нулевой) отверстия. В таком виде щиток устанавливается на опорном основании вертикально по отвесу так, чтобы закрывались вводные втулки, и крепится шурупами. Провода на щитке загибают вверх, обрезают на уровне горизонтальных шлицов для крепления счетчика и снимают с концов жил изоляцию на длине 20—25 мм. Отверткой ослабляют прижимы на зажимной колодке, вводят в них концы проводов и
Рис. 41. Общий вид и электрическая схема квартирных щитков: а - ЩК-9... ЩК12; б - ЩК-13, ЩК-15; 1 - щиток; 2 - резьбовые предохранители; 3 - автоматические выключатели АЕ10; 4 — счетчик электрической энергии снова прижимают. Счетчик крепят к щитку тремя винтами и закрывают крышкой зажимную колодку. Отрезают излишки проводов электропроводки, запитывающейся от щитка, надевают изоляционную трубку, зачищают концы жил, оконцовывают колечком, вводят в открытое отверстие в щитке и подключают к верхним зажимам предохранителей. На колодки предохранителей устанавливают защитные крышки, крепят их винтовыми пластмассовыми шайбами и ввинчивают пробки.
Литература
1. Правила устройства электроустановок. — 6-е изд. — М.: Энергоатомиздат, 1986 - 648 с.
2. Правила технической эксплуатации электроустановок потребителей и Правила техники безопасности при эксплуатации электроустановок потребителей. — 4-е изд. - М.: Энергоатомиздат, 1986 - 424 с.
3. СНиП 3.05.06-85. Электротехнические устройства. — М.: Госстрой СССР, 1988 - 56 с.
4. Электрооборудование и автоматизация сельскохозяйственных агрегатов и установок /Под ред. И.Ф.Кудрявцева. - М.: Агропромиздат, 1988 - 480 с.
5. Практикум по технологии монтажа и ремонта электрооборудования /Под ред. А-А.Пястолова. - М.: Агропромиздат, 1990 - 162 с.
6. Электротермическое оборудование сельскохозяйственного производства /Под ред. Л.С.Герасимовича. -Мн.: Ураджай, 1995 - 416 с.
7. Соколов Б.А., Соколова И.Б. Монтаж электрических установок. — 3-е изд. — М.: Энергоатомиздат, 1991 - 592 с.
8. Шогенов А.Х. Монтаж электрооборудования на фермах. — М.: Агропромиздат, 1991 - 256 с.
9. Электротехника. - 2-е изд. /Под ред. И.А.Федоровой. — Мн.: Вышэйшая школа, 1977 — 392 с.
10.Корнилов Ю.В., Бредихин А.Н. Слесарь-электромонтажник. - М.: Высшая школа, 1988 - 256 с.
11.Шипуль П.Т. 100 советов электрику. — Мн.: Ураджай, 1976.
12.Марочкин В.К. и др. Малая энергетика сельскохозяйственньк предприятий. - Мн.: Ураджай, 1990.
Позиционные обозначения (Буквенные коды) элементов и установка на электрических схемах
М — электродвигатель R - резистор С - конденсатор
GB — источник питания, генераторы, аккумуляторы рА — прибор измерительный, амперметр pV - прибор измерительный, вольтметр Wh - прибор измерительный, счетчик активной энергии Т, TV, ТА — трансформаторы, автотрансформаторы ТА - трансформатор тока TV - трансформатор напряжения LL - катушка индуктивности, дроссели LL — дроссель люминесцентного освещения QS - разъединитель, рубильник QF - выключатель автоматический EL - лампа осветительная ЕК - нагревательный элемент HL — прибор световой сигнализации KM - электромагнитный контактор, пускатель КК - реле электротепловое KV - реле напряжения SA - выключатель или переключатель SB - выключатель кнопочный SQ - выключатель путевой FU - предохранитель плавкий FV — разрядный элемент YB — тормоз с электромагнитным приводом XS — соединение разъемное, гнездо ХР — соединение разъемное, штырь XT — соединение разборное РТ - часы, измеритель времени действия PR - счетчик реактивной энергии RP — потенциометр PR — омметр SF— выключатель автоматический (в аппаратах, не имеющих контактов силовых цепей)