Асинхронные машины
Схема асинхронной машины показана на рис. 2. 15. В схеме асинхронной машины и ее принципе действия есть сходство с трансформатором. Отличие заключается в том, что вторич ная обмотка размещается на вращающемся роторе и не связана с внешней сетью. На схеме рис. 2. 15, а эта обмотка состоит из стержней, замкнутых накоротко, что соответствует двигателю с короткозамкнутым ротором, а в двигателях с фазовым ротором она соединяется с внешними сопротивлениями — рис. 2. 15, б.
Рис. 2. 15. Схемы асинхронной машины:
а) асинхронный двигатель с короткозамкнутым ротором; 6) асинхронный двигатель с фазным ротором; 1 — обмотки статора, 2 — ротор с короткозамкнутыми стержнями, 2 — обмотки фазного ротора, 3 — контактные кольца, 4— сопротивления в цепи фазного ротора.
Обмотка статора равномерно распределена по его окружности. Обмотки фаз статора соединяются в звезду или в треугольник.
При питании трехфазной обмотки статора трехфазным током, создается вращающееся магнитное поле, частота вращения которого
n1=60f1/p
где f1 — частота тока питающей сети, Гц, р — число пар полюсов обмотки статора.
Вращающийся магнитный поток Ф индуцирует в обмотках статора и ротора ЭДС E1 и E2. Под действием ЭДС E2, в обмотке ротора возникает ток I2 при взаимодействии которого с магнитным полем создается электромагнитный вращающий момент М. Величина ЭДС ,E2; и частота ее изменения f2 зависят от скорости пересечения магнитным полем статора Ф витков обмотки ротора. Частоту вращения поля ротора обозначим n2.
Частота пересечения магнитным полем статора обмотки ротора является относительной частотой поля статора относительно ротора и равна разности n1— n2. Если разность равна 0, то нет движения поля статора относительно ротора, нет ЭДС E2 и тока I2 и вращающего момента М. При увеличении разности n1 — n2 величины E2, l2, f2 и М увеличиваются.
Условием работы асинхронной машины является неравенство частот вращения поля статора и ротора, поэтому машина и называется асинхронной, т. е. несинхронной.
Относительная разность частот вращения поля статора и ротора
s=n1-n2/n1
называется скольжением.
Выражение частоты вращения ротора через скольжение: n2 =n1(1-s). Асинхронные электродвигатели. Серии двигателей. Первая серия асинхронных электродвигателей — серия А — была разработана в 1946-1949 гг. Она состояла из семи габаритов в диапазоне мощностей от 0,6 до 100 кВт. В серии предусмотрены защищенные двигатели типа А и впервые — закрытые обдуваемые типа АО. В серии был предусмотрен ряд модификаций по конструкции и характеристикам. Обозначения в данной серии следующие. Защищенное исполнение. Оболочка чугунная — А, алюминиевая — АЛ. Закрытое обдуваемое исполнение. Оболочка чугунная — АО, алюминиевая — АОЛ. Пример обозначения: А031-4, А032-4, где цифры обозначают: 3 — габарит, или наружный размер статора; 1 и 2 — длина машины; 4 — число полюсов. Новая серия А2 была разработана в 1957-1959 гг. с учетом рекомендаций Международной электротехнической комиссии (МЭК). Серия состояла из девяти габаритов двигателей с высотами оси вращения от 90 до 280 мм, шкалы мощностей из 19 ступеней от 0,6 до 100 кВт. Обозначения двигателей серии А2 такие же, как и серии А, только после А стоит цифра 2. Для различных условий работы имеются модификации двигателей. По исполнению двигатели могут быть в химостойком А02...Х, влагоморозостойком А02...ВМ, сельскохозяйственном А02...СХ исполнениях. Другие модификации обозначаются: П — двигатели с повышенным пусковым моментом; С — с повышенным скольжением; К — с фазным ротором. Электродвигатели с повышенным скольжением предназначены для привода механизмов с большими массами и неравномерным ударным характером нагрузки, с большой частотой пусков и реверсов. Двигатели не имеют твердой шкалы мощностей.
Рис. 2.16. Схемы присоединения выводных концов многоскоростных электродвигателей для получения различных частот вращения: Цифры под схемами показывают количество полюсов обмотки, получаемое при данной схеме. Буквы под схемами означают: А-Г— двухскоростные двигатели, Д, Е — трехскоростные двигатели, Ж — четырехскоростные двигатели. Многоскоростные электродвигатели предназначены для привода механизмов со ступенчатым регулированием частоты вращения и не имеют твердой шкалы мощностей.
Схемы включения многоскоростных электродвигателей приведены на рис. 2.16. Цифры под каждой схемой означают число полюсов обмотки статора, которое соответствует данной схеме и определяет синхронную частоту вращения двигателя. Как известно, синхронная частота вращения двигателя, т. е. частота вращения магнитного поля статора n=60f /p где f= 50 Гц — частота сети, р — число пар полюсов. По этой формуле можно определить синхронную частоту вращения двигателя для каждой схемы включения при известном числе пар полюсов, соответствующих данной схеме включения многоскоростного двигателя. Номера подшипников двигателей данной серии приведены в табл. 2.34. Таблица 2.34 ПОДШИПНИКИ ЭЛЕКТРОДВИГАТЕЛЕЙ СЕРИИ А02
Примечание: способы монтажа: М10 — на лапах, М20 — на лапах и с фланцем, МЗ0 — с фланцем. Электродвигатели серии 4А На основе международных рекомендаций в странах — членах бывшего Совета экономической взаимопомощи (СЭВ) в 1969—1972 гг. были разработаны новые серии электродвигателей, а в СССР — серия 4А. Серия включает все двигатели общего назначения мощностью до 400 кВт напряжением до 1000 В. В серии повышена мощность двигателей при тех же высотах оси вращения на 2...3 ступени по сравнению с двигателями серии А02 за счет применения новых материалов и рациональной конструкции. Впервые в мировой практике в серии были стандартизированы показатели надежности. Серия имеет модификации и специализированные исполнения. По степени защиты предусмотрены исполнения IP44 и IP23. Пример обозначения типа двигателя: 4АН200М4УЗ, где 4 — номер серии, А — асинхронный, Н — степень защиты IP23, для закрытых двигателей обозначение не дается, далее может быть буква А, означающая алюминиевые станину и щиты, х — алюминиевая станина и чугунные щиты, если станина и щиты чугунные, никакого обозначения не дается, 200 — высота оси вращения, мм, М или S, L — условная длина станины. Далее возможны буквы А или В, обозначающие длину сердечника статора, отсутствие букв означает одну длину в установочном размере, 4 — число полюсов, У — для умеренного климата, 3 — категория размещения. Специализированные исполнения двигателей по условиям окружающей среды: тропического исполнения Т, буква ставится после числа полюсов, например, 4A132S2T2, категории размещения 2 и 5; для районов с холодным климатом исполнения ХЛ, например, 4А132S2ХЛ2, категории размещения 2 и 5; химически стойкого исполнения X, например, 2А90L2ХУ5, категории размещения 3 и 5; сельскохозяйственного исполнения СХ, например, 4А160М4 СХУ2, категории размещения 1—5. Технические данные некоторых двигателей серии 4А приведены в табл. 2.35. Модификации двигателей: двигатели с повышенным пусковым моментом; с повышенным скольжением; многоскоростные, с фазовым ротором, двигатели с встроенным электромагнитным тормозом. Таблица 2.35 ТЕХНИЧЕСКИЕ ДАННЫЕ НЕКОТОРЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ СЕРИИ 4А
Приняты следующие классы изоляции обмоток двигателей: высота оси вращения 56,63 мм — Е, высота оси вращения 71...132 мм — В, высота оси вращения 160...355 мм — F. Номера подшипников двигателей показаны в табл. 2.36. Таблица 2.36 ПОДШИПНИКИ ЭЛЕКТРОДВИГАТЕЛЕЙ СЕРИИ 4А
Унифицированная серия асинхронных двигателей Интерэлектро АИ Серия разработана в рамках международной организации Интерэлектро, объединявшей электротехников стран — бывших членов СЭВ. Координатором работ по созданию серии был СССР. Разработаны и выпускаются различные модификации двигателей в зависимости от условий среды и назначения. Двигатели выполняются в основном со степенями защиты IР54 или IР44, а при высотах осей вращения 200 мм и более — со степенью защиты IР23. Конструктивное исполнение машин обозначается буквами IМ с четырьмя цифрами. Первая цифра обозначает группу конструктивных исполнений: 1 — на лапах, с подшипниковыми щитами; 2 — на лапах, с фланцем на щите или щитах; 3 — без лап, с подшипниковыми щитами и с фланцем на одном щите. Вторая и третья цифры обозначают способ монтажа, четвертая — исполнение конца вала. Двигатели серии имеют ряд мощностей диапазоном от 0,025 до 400 кВт, ряд высот осей вращения — от 45 до 355 мм. Двигатели с высотами осей вращения до 71 мм выполняются на напряжение 380 В, остальные — 380 и 660 В при частоте 50 Гц, в экспортном исполнении — 60 Гц. Обозначения двигателей серии Пример базового обозначения: АИР100М4, где АИ — серия, Р — вариант увязки мощности с установочными размерами (может быть обозначение С), 100 — высота оси вращения, М — длина корпуса по установочным размерам, 4 — число полюсов. Пример основного обозначения: АИРБС100М4НПТ2, где АИР100М4 — базовое обозначение, Б — закрытое исполнение с естественным охлаждением без обдува, С — с повышенным скольжением, Н — малошумные, П — с повышенной точностью установочных размеров, Т — для тропического климата, 2 — категория размещения. Пример полного обозначения: АИРБС100М4НПТ2 220/380 В, 60 IМ2181, КЗ-11-3, F100, где 60 — частота сети, 1М2181 — исполнение по способу монтажа и концу вала, КЗ—11—3 — исполнение выводного устройства и количество штуцеров, F100 — исполнение фланцевого щита.
Буквы IM — первые буквы английских слов International Mounting, означающих монтаж по международным нормам. Данные некоторых двигателей серии приведены в табл. 2.37. Типы и номера подшипников для двигателей серии АИ приведены в табл. 2.38. Выбор электродвигателей Тип, мощность и частота вращения двигателя для данного механизма обычно известны по паспорту установленного на нем двигателя, а если неизвестны, то потребная мощность двигателя рассчитывается по специальным формулам для каждого механизма. Таблица 2.37 ТЕХНИЧЕСКИЕ ДАННЫЕ НЕКОТОРЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ СЕРИИ АИ
Таблица 2.38 ПОДШИПНИКИ-ДВИГАТЕЛЕЙ СЕРИИ АИ
Частота вращения двигателя должна быть равна частоте. вращения, необходимой для приводимого механизма, если их валы соединяются непосредственно, или должна быть больше потребной частоты вращения механизма с учетом уменьшения ее редуктором, установленным между валами двигателя и механизма. Для выбора электродвигателя надо знать режим работы механизма, который он будет приводить в движение, и условия среды, в которой будут работать механизм с двигателем. Могут быть следующие режимы работы в соответствии с режимами работы приводимых механизмов. S1 — номинальный режим работы, при котором двигатель работает достаточно длительно с номинальной мощностью при достижении установившейся температуры. S2 —- кратковременный режим с длительностью периода неизменной номинальной нагрузки 10, 30, 60 и 90 мин. S3 — повторно-кратковременный режим с продолжительностью включения ПВ = 15, 25 и 60%, продолжительность одного цикла принимается равной 10 мин. S4 — повторно-кратковременный с частыми пусками, с ПВ = 15, 25, 40 и 60%, с числом включений в час 30, 60, 120 и 240 при коэффициенте инерции F = 1,2; 1,6; 2; 2,5; 4; 6,3 и 10, где коэффициент инерции F — отношение момента инерции нагрузки к моменту инерции ротора двигателя. S5 — повторно-кратковременный с частыми пусками и электрическим торможением с ПВ = 15, 25, 40 и 60%, с числом включений в час 30, 60, 120 и 240 при коэффициенте инерции F = 1,2; 1,6; 2; 2,5; 4. S6 — перемежающийся, с ПВ = 15, 25, 40 и 60%, продолжительность одного цикла 10 мин. S7 — перемежающийся с частыми реверсами при электрическом торможении, с числом реверсов в час 30, 60, 120 и 240 при коэффициенте инерции F = 1,2; 1,6; 2; 2,5; 4. S8 — перемежающийся с двумя или более частотами вращения, с числом циклов в час 30, 60, 120 и 240 при коэффициенте инерции F = 1,2; 1,6; 2; 2,5 и 4. Зная потребные мощность и частоту вращения двигателя, можно его выбрать по каталогу с ближайшей большей мощностью по сравнению с расчетной, но выбирать нужно из двигателей такого исполнения, которое соответствует условиям внешней среды, где будет установлен двигатель, и режиму работы механизма. Если нет двигателя в исполнении, соответствующем внешней среде, то приходится применять двигатель в нормальном исполнении, но тогда нужно принять меры для защиты его от влияния внешней среды (будка, навес, обертка целлофаном и т.
д.), при этом важно не нарушить нормального охлаждения двигателя при работе. Монтаж двигателей Двигатель небольшой мощности, поступающий вместе с механизмом, обычно установлен на раме и соединен передачей с механизмом. Двигатели большой мощности для транспортировки снимаются и перевозятся отдельно. Для них также готово место на механизме или специальная рама, которая укрепляется болтами, приваривается и заливается бетоном. Монтаж двигателя в таких случаях заключается в установке его на подготовленное место, что делается силами собственного электрохозяйства или при большом объеме работ силами специализированных монтажных организаций. При этом двигатель укрепляется, присоединяется к механизму через имеющуюся передачу и присоединяется к электрической сети. Остальные работы выполняются при наладке. При монтаже двигателя прежде всего обращается внимание на положение осей валов двигателя и механизма. Если валы соединяются непосредственно, то их оси должны лежать на одной линии. Это лучше всего проверить по положению торцовых частей полумуфт: если они параллельны, то оси лежат на одной линии, при этом также должны совпадать боковые части полумуфт. Положение оси двигателя при креплении его на лапах можно регулировать подкладками под лапы около болтов крепления. При фланцевом креплении двигателя правильное положение осей обеспечивается равномерной затяжкой болтов крепления. Для предупреждения откручивания гаек и ослабления крепления двигателя под гайки подкладываются сначала обычные плоские шайбы, а на них пружинные. При отсутствии пружинных шайб могут применяться вторые гайки — контргайки. Замена двигателей Замена двигателей производится, когда они выходят из строя и снимаются для капитального ремонта. Сама замена не сложна, если готов такой же двигатель для замены. Но в электрохозяйстве может быть установлено множество двигателей различных типов и мощностей, поэтому для каждого двигателя может не быть такого же для замены. Но при наличии соответствующего двигателя для замены могут быть сложности, так как на валу двигателя может быть деталь для передачи вращения — шкив, звездочка, шестерня и т.
д., и может оказаться, что ее не снять имеющимися средствами. В таком случае можно заменить только статор двигателя, оставив ротор с деталью для передачи вращения старым, вместе с передним щитом двигателя. Меняется только статор и в том случае, если вал двигателя имеет специальную конструкцию — удлиненный или с двумя рабочими концами, и нет двигателя с таким валом. Для двигателя с фланцевым креплением, не имеющего лап, можно установить статор с лапами, если они не будут мешать монтажу. Если у вышедшего из строя двигателя со сгоревшей изоляцией обмотки имеются дефекты подшипников, то можно заменить его статор при одновременной замене подшипников. При наличии дефектов вала и вышедшем из строя статоре меняется весь двигатель. При исправном статоре и вышедших из строя подшипниках или неисправном вале меняются подшипники или весь вал с подшипниками, взятый со старого двигателя такого же типа. При отсутствии взаимозаменяемых деталей двигателя приходится менять весь двигатель. При отсутствии для замены двигателя той же серии можно его заменить двигателем другой серии, при этом полезно знать взаимозаменяемые двигатели разных серий. В табл. 2.39 приводятся пары взаимозаменяемых двигателей серии А02 и 4А с одинаковыми диаметрами концов валов и окружностями крепления фланцев фланцевых двигателей. Таблица 2.39 ВЗАИМОЗАМЕНЯЕМЫЕ ДВИГАТЕЛИ
У последней пары двигателей не совпадают диаметры окружностей отверстий крепления фланцев. У двигателей серии 4А буквы S, М или L, М обозначают условные длины статора, при которых диаметры валов одинаковы, указаны число полюсов обмотки статора, при которых диаметры валов одинаковы. У остальных близких по мощности и частоте вращения двигателей диаметры валов не совпадают. При этом не следует пытаться заменить только статор, потому что у разных серий двигателей, хотя они близки по параметрам, статоры разные. Если диаметр вала двигателя не совпадает с диаметром отверстия насаживаемой на этот вал детали, то его нужно привести в соответствие с этой деталью или наоборот. Если диаметр вала больше, то его можно обточить на токарном станке, а потом сделать новую шпоночную канавку.
При этом если двигатель помещается на токарном станке без разборки, то его можно не разбирать. Отверстие детали, насаживаемой на вал, можно рассверлить или расточить и сделать новую шпоночную канавку. Если диаметр вала меньше, чем отверстие насаживаемой на него детали, то можно напрессовать на него или запрессовать в отверстие насаживаемой детали втулку и сделать в ней шпоночную канавку. Если из-за малой разницы размеров вала и отверстия втулку выточить нельзя, то можно ее сделать из листового железа. Близкие по техническим данным двигатели разных серий имеют разные высоты осей вращения. Допустим, высота оси вращения нового двигателя больше высоты оси вращения старого. Если при этом оси двигателя и вала механизма находятся на одной линии, то нужно опускать раму двигателя, если позволяют условия. При невозможности опустить раму двигателя нужно поднимать механизм, приводимый в движение этим двигателем, на величину разницы высот осей вращения двигателя и механизма. Если высота оси вращения нового двигателя меньше, чем старого, то можно подложить под него подкладки или поднять его раму. Если оси двигателя и механизма параллельны, то новый двигатель можно сдвинуть параллельно в плоскости рамы или с самой рамой. Как правило, у двигателей разных серий с близкими по значению мощностями и частотами вращения не совпадают расстояния между отверстиями крепления на лапах, а у некоторых и на фланцах. В таких случаях на раме просверливаются новые отверстия. Если размеры рамы не позволяют сделать этого, то к раме можно приварить дополнительные плоскости для отверстий. При сильном расхождении мест крепления старого и нового двигателя можно применить промежуточную плиту из толстого листового железа, в которой сделать отверстия для креплений к ней двигателя и отверстия для крепления плиты к старой раме. При обработке отверстия детали, насаживаемой на новый двигатель, важно знать диаметр рабочего конца вала нового двигателя. В табл. 2.40 показаны диаметры рабочих концов валов двигателей серии 4 А при данных высотах осей вращения.
При этом для двигателей с высотой оси вращения до 132 мм диаметры концов валов для всех частот вращения одинаковы, а с высотами оси вращения 160 мм и более двигатели с частотой вращения 3000 об/мин имеют меньшие диаметры концов валов, чем двигатели на другие частоты вращения. Таблица 2.40 ДИАМЕТРЫ (d) РАБОЧИХ КОНЦОВ ВАЛОВ ДВИГАТЕЛЕЙ СЕРИИ 4А В ЗАВИСИМОСТИ ОТ ВЫСОТ ОСЕЙ ВРАЩЕНИЯ (h)
Подготовка двигателей к включению в сеть и к работе После монтажа нового двигателя вместе с новым механизмом или после замены двигателя производится его подготовка к включению с целью выявления неисправностей и дефектов монтажа не только двигателя, но и электрического и механического оборудования, с ним связанного. При больших объемах работ подготовка к включению производится при наладке электрического и механического оборудования силами специализированных пуско-наладочных организаций по специальной программе. При подготовке двигателей к включению и к работе производится: внешний осмотр; проверка схемы соединения обмоток; измерение сопротивления изоляции пробный пуск двигателя; проверка работы двигателя на холостом ходу и под нагрузкой. Внешний осмотр При внешнем осмотре проверяются: соответствие данных паспорта электродвигателя проекту, механизму и условиям окружающей среды в месте работы двигателя; отсутствие механических повреждений корпуса, коробки выводов, вентилятора охлаждения; отсутствие повреждений подводящих проводов (нарушений изоляции, скрытых под изоляцией обрывов и изломов); возможность вращения вала от руки, отсутствие заеданий и торможений; вращение ротора проверяется воздействием на деталь, установленную на валу или, при ее недоступности, на вентилятор двигателя. Если ротор двигателя не вращается, то нужно отсоединить механизм, так как причина может быть в нем. Если ротор двигателя, отсоединенного от механизма, не вращается, то это означает, что он заклинен. Заклинивание может произойти при падении двигателя при неосторожной погрузке или разгрузке, от ржавчины в воздушном зазоре между статором и ротором в результате хранения в условиях повышенной влажности, от ржавчины в подшипниках при плохой смазке и наличии сырости.
При заклинивании ротора двигатель должен быть разобран, найдена и устранена причина заклинивания; наличие заземляющих проводников от электродвигателя до места присоединения к сети заземления. Проверка схемы соединения обмоток Большинство двигателей в коробках зажимов имеют шесть выводов, соответствующих началам и концам их фазных обмоток. Обозначения выводов электрических машин, соответствующие стандарту, показаны в табл. 2.45, 2.46. Обычно выводы всех фаз обмотки статора двигателя расположены в коробке зажимов согласно рис. 2.17, а. Такое расположение дает возможность получить соединение фазных обмоток статора в звезду при соединении горизонтально перемычками нижних зажимов и в треугольник при соединении вертикальных пар зажимов (рис. 2.17, б, в). В некоторых двигателях обмотки фаз статора соединены в звезду и в коробке зажимов находятся только выводы С1, С2 и С3. Следует учесть, что выводные концы обмоток фаз двигателя одеваются на шпильки и прижимаются гайками, которые могут быть слабо затянуты, поэтому нужно проверять крепление выводных концов их пошатыванием. При слабом креплении этих концов нужно отсоединять подводящие провода и перемычки и затягивать гайки крепления выводных концов обмотки двигателя.
Рис. 2.17. Выводы обмоток статора трехфазного асинхронного электродвигателя: а) схема присоединения начал и концов обмоток к зажимам колодки в выводной коробке; б) схема включения обмоток статора в звезду и соединение выводных зажимов; в) схема включения обмоток статора в треугольник и соединение выводных зажимов. Измерение сопротивления изоляции Об измерении сопротивления изоляции рассказано в гл. 5. Величина сопротивления изоляции электродвигателя согласно ПУЭ не нормируется, но в стандарте указано, что величина сопротивления изоляции электрических машин должна быть не менее 1 кОм на 1 В номинального напряжения машины. Пробный пуск двигателя Электродвигатель включают на 2...3 с и проверяют: направление вращения; работу вращающихся частей двигателя и вращающихся и движущихся частей механизма; действие пусковой аппаратуры. При любых признаках неисправности электрической или механической части двигатель останавливается и неисправности устраняются. Нужное направление вращения механизма бывает на нем обозначено стрелкой.
Нужно также помнить, что при правильном направлении вращения рабочих колес турбомашин (насосов, вентиляторов и т. д.) их лопатки загнуты назад относительно направления вращения. Правильное направление вращения двигателей транспортирующих машин (транспортеров, шнековых и ковшовых подъемников и др.) определяется по движению их рабочих органов. Для изменения вращения двигателя достаточно отсоединить от зажимов два провода, подводящих напряжение к двигателю, поменять их местами и снова присоединить. Обычно это делается на выходе пускового аппарата. Кратковременное включение повторяют 2—3 раза, увеличивая продолжительность включения. Проверка электродвигателя на холостом ходу и под нагрузкой Проверку электродвигателя на холостом ходу производят при отсоединенном механизме. Если отсоединить механизм нельзя, то проводится проверка при ненагруженном механизме. Продолжительность проверки — 1ч. При этом проверяют нагрев подшипников, корпуса двигателя, наличие вибрации, характер шума подшипников. При ненормальном шуме подшипников и их перегреве двигатель приходится разбирать и устранять причину. При невозможности устранить причину ненормальной работы подшипника он заменяется. При повышенном нагреве корпуса двигателя (большем, чем у других нормально работающих двигателей) он останавливается и производится проверка прилегания контактов в аппаратах, через которые подводится напряжение к двигателю, проверка плотности затягивания зажимов проводов, начиная от выводных концов в коробке двигателя. При исправности цепи, подводящей напряжение к двигателю, и его повышенном нагреве он должен отправляться в капитальный ремонт. Перед этим у него должно быть проверено соответствие обозначений выводных концов фазных обмоток, измерено сопротивление обмоток постоянному току, что делается при наладке опытными специалистами. О других неисправностях и их устранении можно узнать ниже по табл. 2.44, далее рассказано об устранении вибраций. . После проверки двигателя на холостом ходу начинается его проверка под нагрузкой.
При нормальной работе двигателя в течение 20...30 мин с механизмом далее продолжается его обкатка вместе с механизмом не менее 8 ч. При этом прирабатываются подвижные детали механизмов, проверяется на нагрев электрооборудование, выявляются его слабые места. Режим обкатки определяется механиками, производившими монтаж технологического оборудования. Способы пуска в ход асинхронных двигателей Схемы пуска двигателей в ход должны предусматривать создание большого пускового момента при небольшом пусковом токе и, следовательно, при небольшом падении напряжения при пуске. При этом может требоваться плавный пуск, повышенный пусковой момент и т. д. На практике применяются следующие способы пуска: непосредственное присоединение к сети — прямой пуск; понижение напряжения при пуске; включение сопротивления в цепь ротора в двигателях с фазовым ротором. Прямой пуск Прямой пуск применяется для двигателей с короткозамкнутым ротором. Для этого они проектируются так, чтобы пусковые токи, протекающие в обмотке статора, не создавали больших механических усилий в обмотках и не приводили к их перегреву. Но при прямом пуске двигателей большой мощности в сети могут возникать недопустимые, более 15%, падения напряжения, что приводит к неустойчивой работе пусковой аппаратуры (дребезжание), подгоранию контактов и практически к невозможности пуска. Такие явления могут быть в маломощной сети или при большом удалении от подстанции пускаемого двигателя. Прямой пуск двигателя от маломощной сети В маломощной сети условия пуска двигателя ухудшаются для самого двигателя, ухудшается работа уже включенных двигателей и ламп накаливания, поэтому должны быть ограничения по мощности двигателя в зависимости от вида нагрузки сети и количества пусков двигателя. Существуют следующие ограничения мощности двигателя. Трансформатор, питающий чисто силовую сеть: 20% мощности трансформатора при частых пусках; 30% мощности трансформатора при редких пусках. Трансформатор имеет смешанную нагрузку: 4% мощности трансформатора при частых пусках; 8% мощности трансформатора при редких пусках. Электростанция малой мощности — 12% мощности электростанции. В маломощных сетях следует ограничивать число пусков сравнительно мощных двигателей, при затруднении их пуска по возможности отключать другие двигатели. Пуск при пониженном напряжении Этот способ пуска применяется для двигателей средней и большой мощности при ограниченной мощности сети.
Рассмотрим некоторые способы понижения напряжения при пуске. Переключение обмотки статора двигателя с пусковой схемы звезда на рабочую схему треугольник Для лучшего понимания способа пуска разберем схемы соединения обмоток двигателей и влияние этих схем на величину фазного напряжения двигателя при заданном линейном напряжении. Обмотки двигателей могут соединяться звездой или треугольником. Тип соединения определяет соотношение между напряжением на зажимах двигателя и напряжением на фазах его обмотки, т. е. номинальным напряжением двигателя. Напряжение на зажимах двигателя измеряется между его зажимами и называется линейным, и на фазе обмотки — между ее началом и концом и называется фазным. Как известно, при соединении треугольником напряжения линейное и фазное равны, а при соединении звездой линейное напряжение больше фазного в 3^-0.5 раз. Двигатель может иметь в коробке зажимов три или шесть концов. При наличии шести концов возможно соединение двигателя звездой или треугольником в зависимости от напряжения сети, к которой будет присоединяться двигатель, и его номинального напряжения. Если номинальное напряжение двигателя 220 В, то при линейном напряжении сети 380 В его нужно соединять звездой, а при линейном напряжении сети 220 в — треугольником. При номинальном напряжении двигателя 380 В и линейном напряжении сети 380 В двигатель нужно соединять треугольником, а при линейном напряжении сети 660 В — звездой. Как соединять выводные концы двигателя при различных схемах соединения его обмоток, видно из схем соединение обмоток, показанных на рис. 2.17, б, в, где указаны стандартные обозначения концов и начал фазных обмоток двигателя. Если в коробке зажимов двигателя имеется три вывода обмоток с зажимами, то он имеет определенную схему соединения обмоток в зависимости от напряжения, на которое он рассчитан. Схема пуска двигателя включением на пусковую схему звезда и с переключением на рабочую схему треугольник показана на рис. 2.18.
Рис. 2.18. Схема пуска трехфазного асинхронного электродвигателя включением на пусковую схему «звезда» и с переключением на рабочую схему «треугольник»: SB1— кнопка КМЕ4201 (красная); SB2— кнопка КМЕ4201 (черная); КМ2.1, КМ2.2— пускатель ПМА-3100У4, 220 В; КТ1 — промежуточное реле РПЛ2204, 220 В, пневмоприставка ПВЛ1104; М2 — электродвигатель А02-72-2,30 кВт, 2910 об/мин; QF2 —выключатель автоматический АЕ2046, 63 A; SF2 —выключатель автоматический А63, 4 A; QS1 —выключатель пакетный ПВЗ—100. Перед пуском двигателя включаются выключатели QS1, QF2 и SF2. При нажатии на кнопку SB2 включается пускатель КМ2.1, соединяющий концы фазных обмоток двигателя в звезду.
Одновременно включается реле времени КТ1, замыкая контакт КТ1.3, шунтирующий контакты кнопки SB2. С выдержкой времени, необходимой для разгона двигателя, отключается контакт КТ1.1 реле времени, отключая пускатель КМ2.1, и включается контакт КТ1.2, включающий пускатель КМ2.2, переключающий концы фазных обмоток двигателя на треугольник, и двигатель продолжает работать. Так как при пуске двигателя при подключении по схеме звезда фазное напряжение обмотки уменьшается в 3^0.5 раз по сравнению со схемой треугольник, то фазные токи также уменьшаются в 3^-0.5 раз, которые равны линейным токам при этой схеме. Но при схеме треугольник, являющейся рабочей в данном случае, фазные токи меньше линейных в 3^-0.5 раз, а при пусковой схеме звезда получается еще уменьшение фазных токов в 3^-0.5 раз, и в результате линейные токи, равные фазным при пусковой схеме звезда, уменьшаются в 3 раза. После разгона двигателя обмотка его статора переключается на нормальную схему треугольник, поэтому схема пуска двигателя кратко называется схемой пуска переключением со звезды на треугольник.
Рис. 2.19. Схема пуска трехфазного асинхронного электродвигателя с помощью тиристорного регулятора напряжения (ТРН). Пуск электродвигателя с помощью тиристорного регулятора напряжения Схема включения двигателя с помощью тиристорного регулятора напряжения представлена на рис. 2.19. В регуляторе напряжения в каждый фазный провод включаются встречно-параллельно два тиристора, один из которых работает условно в положительный полупериод напряжения сети, а другой в отрицательный. Регулирование напряжения на выходе регулятора осуществляется изменением времени включения каждого тиристора относительно момента, когда ток должен переходить с одного из трех тиристоров на другой (базовая точка), путем подачи на тиристор управляющего импульса, что дает возможность изменять время протекания тока через тиристор в течение полупериода напряжения сети и напряжение на его выходе, подаваемое на нагрузку, в данном случае на двигатель.
Это напряжение не является синусоидальным, и его можно представить как среднее напряжение, которое можно менять, изменяя продолжительность работы тиристора в течение полупериода. Время включения тиристора относительно базовой точки выражается в градусах и называется углом регулирования [7]. Изменяя угол регулирования тиристоров, можно получить необходимое напряжение для плавного пуски двигателя. Пуск электродвигателя с фазовым ротором Схема включения двигателя с фазовым ротором и получаемые при пуске механические характеристики показаны на рис. 2.20. Двигатель имеет контактные кольца, которые позволяют включать в цепь ротора при пуске добавочные сопротивления R1 и R2. В начале пуска включены обе ступени сопротивлений, при этом получается наибольший пусковой момент Мп1, разгон происходит по механической характеристике 1, частота вращения увеличивается, но не достигает номинальной и в точке б происходит отключение первой ступени сопротивлений R1 контроллером при замыкании контактов К1.1 и К1.2. При постоянной частоте вращения происходит увеличение пускового момента до Мп1 и снова разгон по характеристике 2 с более высокой частотой вращения. В точке г отключается вторая ступень R2 сопротивлений контактами К2.1 и К.2.2 и происходит переход на естественную механическую характеристику 3. Далее работа двигателя происходит при номинальной частоте вращения nн и при номинальном моменте Мн.
Рис. 2.20. Включение асинхронного электродвигателя с фазовым ротором: а) схема включения; б) механические характеристики при пуске; R1, R2 — ступени сопротивлений, К1.1, К1.2, К2.1, К2.2 — контакты переключателя. При пуске двигателя происходит не только уменьшение пусковых токов, но и увеличение пускового момента, что важно для двигателей, которые включаются под нагрузкой (различные транспортные приспособления и машины). Работа трехфазного двигателя в однофазной сети На практике может потребоваться применение трехфазного двигателя в однофазной сети, например, при выходе из строя двигателя стиральной машины или другой бытовой машины, когда замены нет, а есть трехфазный двигатель. Одна из схем такого применения показана на рис. 2.21, где к двум вершинам треугольника подводится напряжение сети, равное 220 В, а к третьей — пусковая емкость Сп через контакт выключателя, замыкающийся на время пуска двигателя для создания пускового момента, и рабочая емкость Ср, включаемая на все время работы двигателя.
Соединение обмоток двигателя треугольником предпочтительнее, так как при этом к фазной обмотке двигателя подводится напряжение, равное напряжению сети, большее, чем при соединении звездой, и получается большой крутящий момент.
Рис. 2.21. Применение трехфазного двигателя в однофазной сети: Q — выключатель неавтоматический, имеющий средний контакт с самовозвратом, Сп, Ср — емкости пусковая и рабочая. При напряжении сети 220 В и частоте сети 50 Гц рабочая емкость, мкф, Ср = 66Рн, где Pн. — номинальная мощность двигателя, кВт. Пусковая емкость, мкф Сп = 2Ср = 132Рн. Если двигатель запускается без пусковой емкости, то ее можно не применять. Средства защиты электродвигателей Основные причины выхода двигателей из строя Защита электродвигателей означает их автоматическое отключение пуско-защитными аппаратами с целью предотвращения выхода из строя при увеличении токов в обмотках выше допустимых. Выход из строя двигателя в большинстве случаев означает полное или частичное обугливание изоляции его обмотки при нагреве обмоточного провода большим током. Большой, свыше номинального, ток в обмотке двигателя появляется при длительной перегрузке его механизмом, при заклинивании механизма, а также при несимметрии напряжений в питающих проводах, зависящих от состояния сети, т. е. при аварийных режимах в сети. Одно из первых мест среди аварийных режимов занимает обрыв фазного провода в цепи питания двигателя. Обрыв может быть на линиях высокого и низкого напряжений, при обгорании контактов или зажимов в аппаратах высокого и низкого напряжений, при повреждении кабелей или проводов питания двигателей, обгорании зажимов на самом двигателе. При обрыве фазного провода двигатель не запускается или при работе он останавливается и его обмотка обугливается. Защита электродвигателей осуществляется аппаратами, которые рассмотрены в п. 2.9, поэтому не будем возвращаться к их конструкции и принципу действия, а рассмотрим особенности защиты двигателей различными аппаратами и действенность этой защиты. Реле тепловые Распространенной защитой электродвигателей является защита тепловыми реле, которые монтируются в корпусах пускателей, если пускатели устанавливаются отдельно, или шкафах и на щитах.
Правильно подобранные тепловые реле защищают двигатель от перегрузки, заклинивания, потери фазы, хотя предназначены они для защиты от перегрузки. Недостаток защиты тепловыми реле заключается в том, что трудно подобрать реле из имеющихся в наличии для каждого двигателя так, чтобы ток теплового элемента реле соответствовал току двигателя. Также следует учесть, что тепловые реле сами требуют защиты от тока короткого замыкания. Если соответствуют друг другу токи двигателя и уставки реле, это не значит, что реле надежно сработает, так как имеется разброс параметров реле с уставкой на один и тот же ток, поэтому реле нужно регулировать на специальном стенде, что не всегда возможно из-за отсутствия стендов и грамотных специалистов. Защита реле тепловыми показана на рис. 11.8, где ККЗ — тепловые элементы реле в силовой цепи двигателя и контакты реле в его цепи управления. Реле максимального тока (максимальные реле) Максимальные реле применяются для защиты двигателей механизмов, которые могут заклиниваться во время работы, например, дозаторов, транспортеров. Эти реле могут защитить двигатель и от потери фазы. Защита с помощью реле максимального тока показана на рис. 11.8, где ККЗ — обмотка реле в силовой цепи двигателя и контакты реле в цепи управления двигателя. Автоматические выключатели (автоматы) Автоматы применяются для защиты двигателей, так как имеют расцепители максимального тока и тепловые расцепители, по принципу работы соответствующие максимальным и тепловым реле. Следует учесть, что не все автоматы имеют расцепители и поэтому не все они могут защитить двигатель от перегрузки. В схеме защиты автоматы обычно устанавливаются перед пускателем (рис. 11.8), где автомат QF2 служит для включения и отключения проводов и аппаратов, расположенных за ним по ходу электроэнергии в направлении двигателя, для защиты этих проводов и аппаратов от тока короткого замыкания и двигателя от тока короткого замыкания и перегрузки. Устройства встроенной тепловой защиты (УВТЗ) Устройство отключает пускатель электродвигателя, когда температура обмоток двигателя становится больше допустимой для данного типа изоляции обмоток двигателя.
Устройство состоит из электронного блока и датчиков. Датчики устанавливаются в лобовых частях обмотки двигателя (по одному на каждую фазу). Температурными датчиками служат полупроводниковые термосопротивления — позисторы. Схема внешних соединений при данном виде защиты показана на рис. 2.22. При повышении температуры обмотки двигателя увеличивается сопротивление встроенного резистора Rк, которое воздействует на электронную схему электронного блока, в результате чего размыкаются контакты 2-3 реле, находящегося в электронном блоке, и отключают катушку пускателя К.
Рис. 2.22. Схема внешних соединений устройства встроенной тепловой защиты электродвигателя (УВТЗ): QF— выключатель автоматический, SB1, SB2— контакты кнопки управления, К- пускатель магнитный, Rk — датчик температуры, 1, 2, 3, 4, 5, 6 — зажимы в цепи устройства. Недостатком данного вида защиты является то, что с датчиками выпускаются не все двигатели, и датчики могут устанавливаться в условиях ремонтных мастерских, поэтому при замене двигателей может не оказаться двигателей с датчиками, защита данного вида будет бездействовать, и придется устанавливать другую. При данном виде защиты приходится отдельно приобретать специальные электронные блоки и датчики. Защита реагирует не на причину аварийного состояния двигателя — большой ток, а на последствия этого состояния — нагрев обмотки двигателя, поэтому она может быть неэффективной с учетом инерции процессов. Фазочувствительное устройство защиты (ФУЗ) Как следует из названия, в данной защите контролируется не ток двигателя, а угол сдвига фаз между линейными токами двигателя, величина которого при аварийном режиме будет отличаться от величины его в нормальном состоянии. Угол сдвига фаз между токами в трехфазной сети в нормальных условиях равен 120°, а при обрыве в одном фазном проводе угол сдвига фаз между токами в исправных проводах становится равным 180°. Значит, если контролировать изменение угла сдвига фаз между токами в проводах, подводящих ток к электродвигателю, то двигатель можно защитить от последствий обрыва фазного провода.
Рис. 2.23. Схема, поясняющая принцип действия фазочувствительного устройства защиты электродвигателей (ФУЗ): Т1, Т2 — трансформаторы, К1 — реле. Принцип действия устройства показывает простейшая схема на рис. 2.23. В схеме имеется датчик в виде моста из диодов VD1—VD4 и резисторов R1—R4. Для получения сигнала, принимаемого датчиком, формируются два напряжения U1, и U2 с определенным углом сдвига фаз между ними, который учитывается датчиком. Для получения этих напряжений применяются трансформаторы Т1 и Т2, включаемые в цепь питания двигателя. К датчику через вторичные обмотки трансформаторов присоединено реле К1, которое своими контактами К1.1 отключает магнитный пускатель двигателя при аварийное режиме. При невозможности запускания или заклинивания двигателя, обрыве фазного провода токи нагрузки и измеряемые напряжения U1 и U2 увеличиваются, ток в катушке реле возрастает и становится больше тока срабатывания реле, и оно срабатывает, отключая двигатель. Технические данные некоторых устройств ФУЗ представлены в табл. 2.41. Неисправности и отказы асинхронных двигателей с учетом неисправностей в цепи их питания и перегрузок показаны в табл. 2.44. Таблица 2.41 ТЕХНИЧЕСКИЕ ДАННЫЕ УСТРОЙСТВ ФУЗ-М
Датчики систем автоматического регулирования
Состояние машин и установок можно контролировать не только человеком, но и специальными устройствами, называе
мыми чувствительными элементами или датчиками. Сигнал от датчика подается на устройство сравнения вместе с заданным сигналом, сигнал разности подается на усилитель, и этот усиленный сигнал действует на исполнительный органа изменяющий состояние регулируемого объекта.
В электроустановках датчик воздействует на электрическую цепь, включая или выключая ее, изменяя электрическое сопротивление или вырабатывая электричество.
Всегда важно выбрать место установки датчика. Например, в системе водяного отопления от электрокотла датчик температуры ставится на выходе ее из котла, чтобы подавать сигнал на включение и отключение нагревательных элементов котла для поддержания температуры воды на выходе котла соответствующей заданной. При установке датчика в других местах котел может не отключиться даже при аварийных режимах работы, например, при отсутствии циркуляции воды и перегреве котла.
Датчики температуры
Термопреобразователи сопротивления (термометры сопротивления) применяются для передачи сигнала о температуре объекта на расстоянии от объекта до показывающего прибора, т. е. для дистанционного измерения температуры. Их принцип работы основан на свойстве металлов изменять удельное сопротивление при изменении температуры. Схема термопреобразователя сопротивления показана на рис. 2.38.
Рис. 2.38. Схема термопреобразователя сопротивления
1 — чувствительный элемент, 2 — провода, 3 — корпус, 4 — штуцер крепления корпуса, 5 — клеммы, 6 — штуцер для вывода проводов.
Чувствительный элемент термопреобразователя состоит из проволоки, намотанной на каркас. В зависимости от материала проволоки различаются термопреобразователи сопротивления медные (ТСМ) и платиновые (ТСП). Размер каркаса чувствительного элемента от 60 до 100 мм. Каркас вставляется в конец корпуса защитной арматуры, а на другом конце корпуса имеется головка с зажимами для проводов, идущих от чувствительного элемента.
На корпусе имеется штуцер для его крепления на технологическом оборудовании. Термопреобразователи различаются монтажной длиной — расстоянием от штуцера до конца, в котором находится чувствительный элемент, которая может меняться от 80 до 3150 мм. Пределы измеряемой температуры термопреобразователя от -200 до 600 -С. Термоэлектрические преобразователи (термопары) служат также для дистанционного измерения температуры. Их принцип действия основан на использовании ЭДС, получаемой от двух спаянных концов разного металла, если их спай и свободные концы находятся при разных температурах. Термоэлектрические преобразователи обозначаются в зависимости от применяемых сплавов: хромель—копель — ТХК, хромель—алюмель — ТХА, платинородий—платина — ТПП, платинородий (30% родия) — платинородий (6% родия) — ТПР. Термоэлектрический преобразователь устроен аналогично термопреобразователю сопротивления. Длина его монтажной части до 10 м, пределы измеряемой температуры — от -50 до 1800 °С. Особенность применения термоэлектрических преобразователей заключается в необходимости компенсации температуры холодных концов спая. Если температура холодных концов, равная температуре окружающего воздуха, будет изменяться, а температура измеряемой среды будет неизменной, то значения термо-ЭДС будут также изменяться. Неизменность показаний прибора достигают электрической компенсацией влияний температуры в месте установки прибора, воспринимающего термо-ЭДС. Для этого термоэлектрический преобразователь присоединяют к вторичному прибору специальными компенсационными проводами (табл. 2.51). Манометрические термометры применяются для дистанционного измерения температуры. Их принцип действия основан на зависимости между температурой и давлением жидкости или газа при постоянном объеме. Схема манометрического термометра показана на рис. 2.39. Прибор состоит из термобаллона, соединенного капилляром с вторичным прибором — манометром. В манометре капилляр соединяется с трубчатой пружиной, которая скручиваемся или раскручивается в зависимости от давления жидкости или газа в системе манометра, зависящего от температуры измеряемой среды, куда помещен термобаллон.
Пружина действует на механизм манометра, воздействующий на показывающие и регулирующие устройства (стрелки, самописцы, контакты). Таблица 2.51 ДАННЫЕ ТЕРМОЭЛЕКТРОДНЫХ ПРОВОДОВ
Манометрические термометры могут быть газовые, жидкостные и конденсационные, самопишущие, сигнализирующие и показывающие. К последним относятся газовые типа ТГП—100, конденсационные типа ТКП—100. Пределы измерения различных типов приборов от —50 до 600 °С, длина капилляра от 1,6 до 40 м. Терморезисторы широко применяются в устройствах автоматики. Они встраиваются в обмотки электродвигателей, если применяется устройство температурной защиты, являются датчиками в регуляторах температуры.
Рис. 2.39. Схема манометрического термометра: 1 — пружина манометрическая, 2 — стрелка показывающая, 3 — ось, 4 — механизм передаточный, 5 — капилляр, 6 — термобаллон. Биметаллические элементы являются датчиками температурами. Их принцип действия основан на свойстве пластинки, сваренной иэ двух разных металлов, изгибаться из-за разного удлинения этих металлов при нагревании. Биметаллические элементы применяются в приборах для регулирования температуры различных сред, в защитных тепловых реле, применяемых в бытовых приборах и в промышленных установках Датчики давления Для измерения давления в различных средах широко применяются манометры. Чувствительными элементами манометры являются плоские или гофрированные мембраны, мембранные коробки, сильфоны и различного рода манометрические пружины. В системах автоматики применяются электроконтактактные манометры типов ЭКМ-1У, ЭКМ-2У, ВЭ-16Р6 с пределами измерения от 0,1 до 160 МПа. Схема электроконтактного манометра показана на рис. 2.40.
Pиc. 2.40. Электрическая схема электроконтактного манометра. 1 — стрелка, 2 — шкала, 3 — зажимы выводов, связанные с неподвижными контактами и стрелкой, 4 — контакты подвижные Датчики уровня Датчики уровне служат для контроля уровня жидкостей в резервуарах и для подачи сигналов о регулировании этого уровня. Электродный датчик имеет короткий и длинный электроды, укрепленные в коробке зажимов.
Короткий электрод является контактом верхнего уровня, а длинный — нижнего уровня. Датчик соединяется проводами со станцией управления. двигателем насоса. Касание коротким электродом воды приводит к отключению пускателя насоса, понижение уровня воды ниже длинного электрода приводит к включению насоса. Электродные датчики применяются и в других установках, кроме насосных, например, в системе подкачки воды в парогенераторах. Поплавковое реле применяется в отапливаемых резервуарах. Одна из конструкции этого реле состоит из коромысла, на конце которого подвешены на тросе один над одним два поплавка. Верхний поплавок представляет собой емкость дном вверх, а нижний — емкость дном вниз. Ось коромысла заходит в корпус, где кулачками переключает тумблер, включающий или отключающий двигатель насоса. При снижении уровня воды конец коромысла опускается под действием веса поплавков и воды в нижнем поплавке, кулачок коромысла включает насос, воздействуя на тумблер. При повышении уровня воды поплавки поднимаются, коромысло под действием противовеса поднимает конец с тросом и переключает тумблер на остановку насоса. Электроконтактные манометры также применяются как датчики уровня, так как каждый уровень воды соответствует определенному ее давлению. При этом шкала манометра должна иметь достаточно большие деления, чтобы установить пределы давления на включение и отключение насоса с помощью подвижных контактов на приборе. Для определения уровня сыпучих материалов в бункерах служат мембранные датчики уровня, которые крепятся в отверстии стенки бункера. В них мембрана воздействует на контакты, замыкая или размыкая цепь управления загрузочными или разгрузочными устройствами. Датчики освещенности и пламени Для включения и отключения уличного освещения применяются фотореле, датчиком освещенности с которыми применяются фотосопротивления ФСК—Г1. Они представляют собой герметические корпуса с окном со стеклом для освещения фотосопротивления, которое находится внутри. Наружу выведены два контакта для припайки проводов. Для контроля пламени в топках на жидком топливе применяются фотореле — приборы контроля пламени, датчиками которых являются фотоголовки ФСК—6, внутри которых за стеклом находятся два фоторезистора. Механические контактные датчики Принцип работы датчиков такой же, как кнопочных постов, только переключаются они не вручную, а различными выступающими деталями механизмов, действующими на штоки и педали, несущие подвижные контакты.
Широкое распространение имеют конечные выключатели, сигнализирующие о положении различных механизмов, служащие для их остановки или изменения направления движения. Конечные выключатели, имеющие малые габариты, называются микропереключателями. Бесконтактные датчики перемещения Пример конструкции датчика показан на рис. 2.41, о, его принципиальная схема — на рис. 2.41, б. Датчик состоит из генератора и усилителя на транзисторах. На генератор воздействует внешняя стальная пластина, связанная с движущейся частью объекта регулирования, например, с цепью транспортера. При введении в зазор корпуса датчика металлической пластины между базовой и коллекторной обмотками трансформатора происходит уменьшение коэффициента обратной связи генератора, вызывающее срыв генерации. В усилителе нормально закрытый выходной транзистор открывается, что дает сигнал на срабатывание реле и блока управления. Детали датчика залиты в компаундную смолу, поэтому он является водозащищенным и выдерживает экстремальные температуры производственных условий.
Рис. 2.41. Бесконтактный датчик перемещения типа КВД—6: о) общий вид: 1 — пластина металлическая на контролируемом механизме, 2 — провода для присоединения к пульту управления; 6) принципиальная схема. Неисправности датчиков При выборе датчиков нужно учитывать соответствие условий внешней среды и напряжения, при которых они будут работать, исполнению датчиков. Датчик также должен иметь запас по измеряемому параметру. Например, если термоэлектрический преобразователь поместить в среду с большей температурой, чем та, которая указана на его корпусе или в его документации, то он выйдет из строя. Следует иметь в виду, что при выходе из строя системы регулирования температуры может быть перегрев объекта регулирования и выход из строя термоэлектрического преобразователя. Для подключения термоэлектрических преобразователей к измерительным приборам применяют специальные термоэлектродные провода с двумя жилами из специально подобранных металлов и сплавов, которые в интервале температур от 0 до 100 С развивают такую же термо-ЭДС, как и соответствующий преобразователь.
Плюсовая жила провода должна присоединяться к плюсовому термоэлектроду, а минусовая — к минусовому. Данные по термоэлектродным проводам приведены в табл. 2.51. Неисправности термоэлектрического преобразователя при работе вместе с конечным прибором приведены в табл. 2.52. В манометрах органом, воспринимающим давление, являются мембраны, коробки, сильфоны и трубки, и надежность манометра зависит от герметичности этих устройств. В системе регулирования уровня воды с помощью электроконтактных манометров может быть неустойчивая работа и подгорание контактов манометра, промежуточных реле и пускателя. Причина в том, что стрелка манометра, с которой связан подвижный контакт, не сразу устанавливается в положение равновесия при переключении насоса из-за колебаний давления в системе, которое воспринимает стрелка. Колебание стрелки, несущей подвижный контакт, приводят к включению и выключению насоса, что приводит снова к колебаниям, которые могут быть незатухающими, что может вывести из строя двигатель насоса. Для обеспечения устойчивости могут быть механические и электрические корректирующие устройства. Механическое корректирующее устройство может быть в виде успокоителя — демпфера в трубке, подводящей воду к манометру, но оно не всегда эффективно. Если электрическое корректирующее устройство не предусмотрено схемой, то оно может быть сделано в виде цепочки последовательно соединенных конденсатора и резистора, присоединенных параллельно контактам манометра. Эти детали можно расположить в любом удобном месте, например, в пульте управления, присоединив к соответствующим точкам схемы. Величины емкости и сопротивления можно подобрать опытным путем. Таблица 2.52 НЕИСПРАВНОСТИ ТЕРМОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ ПРИ РАБОТЕ С ПРИБОРОМ
Примечание: ремонт всех приборов производится специализированными организациями. Чтобы полностью исключить влияние неустойчивого включения контактов манометра на работу системы, можно применить задержку их влияния на систему с помощью реле времени. Для этого размыкающий контакт реле времени включается параллельно контактам манометра.
Реле времени включается сразу после касания контактов манометра, потом происходит задержка времени включения размыкающего контакта, пока стрелка манометра не успокоится, после чего контакт реле времени размыкается.— рис. 2.42. Датчики уровня поплавковые, электродные и мембранные при низкой температуре являются неработоспособными. Первые два вмерзают в воду и требуют обогрева, которое не всегда возможно осуществить. Мембрана датчика уровня для сыпучих материалов при низкой температуре также не работает и выходит из строя, поэтому и хранить их нужно при положительной температуре.
Рис. 2.42. Коррекция системы автоматического управления насосом с электроконтактным манометром: о) цепь RC, присоединенная параллельно контактам манометра; б) размыкаемые контакты реле времени, присоединенные параллельно контактам манометра. Если в воде, где применяется электродный датчик, много минеральных частиц, то они осаждаются на электродах и детали крепления электродов, что приводит к нарушению работы системы автоматики, и нужна чистка датчика. При повышенной температуре на электродах осаждается также накипь, что требует более частой чистки. В корпусах фотосопротивлений и фотоголовок активный элемент защищен стеклом, через которое он освещается. Стекло может загрязняться, а у датчиков пламени топок покрываться сажей, поэтому стекло датчиков нужно периодически чистить. На датчик может влиять посторонний свет, нарушая работу установки. Например, освещение датчика наружного освещения ночью вызывает отключение наружного освещения. Освещение может быть фарами машин, от близко расположенного светильника, от снежной поверхности. Для защиты от случайного освещения можно применить козырек из жести, влияние снежного покрова можно устранить регулировкой переменного резистора в цепи фотореле. На работу контактных механических датчиков влияют условия среды. Сырость, агрессивная среда приводят к окислению контактов и всех металлических деталей, так что датчик трудно разобрать для ремонта, и приходится его заменять.При понижении температуры при наличии сырости все подвижные детали смерзаются и заклиниваются, и датчик перестает работать. Запыленность также ведет к отказу датчиков. Всех этих недостатков лишены бесконтактные датчики перемещения. Они также безопасны, так как электронное устройство имеет малое напряжение питания — 12 В.
Группы соединений обмоток трансформаторов
Первичные и вторичные обмотки трансформатора могут быть соединены по-разному. На рис. 2.4, а показано соединение обмоток звездой, которое применяется часто. На рис. 2.4, б показаны векторы напряжений первичной и вторичной обмоток, а на рис. 2.4, в — эти векторы, совмещенные со схемой циферблата часов. Минутная стрелка часов совпадает с направлением векторов первичной обмотки, а часовая — с направлением вектора вторичной обмотки той же фазы.
Группу соединений образуют несколько схем соединений обмоток трансформаторов, дающие одинаковый сдвиг по фазе векторов напряжений вторичных обмоток относительно векторов напряжений первичных обмоток. Вторичные напряжения одноименных фаз всех трансформаторов, имеющих одну и ту же группу соединений, совпадают по фазе.
Таблица 2.2 ДАННЫЕ НЕКОТОРЫХ ТРАНСФОРМАТОРОВ
Векторы первичных и вторичных напряжений в зависимости от схемы соединения обмоток и их расположения на стержнях магнитопровода могут иметь сдвиги, кратные 30°, поэтому всего основных групп может быть: 360° : 30° = 12, или в часах 1,2... 12. Очевидно, группы 0 и 12 являются одной и той же группой.
Четные группы (2, 4, 6, 8, 10, 12) получаются, если обмотки высшего напряжения (ВН) и обмотки низшего напряжения (НН) соединены одинаково — в звезду или в треугольник.
Нечетные группы (1, 3, 5, 7, 9, 11) получаются, если одна обмотка соединена в звезду, а другая в треугольник.
В обозначении группы соединений слева от черточки расположены знаки или буквы, характеризующие схему соединения обмоток, а справа — цифры, указывающие сдвиг в часовом обозначении.
Рис. 2.4. Группа соединений обмоток трансформатора:
а) схема обмоток трансформатора; б) векторная диаграмма обмоток высшего и низшего напряжений; в) совмещение векторов высшего и низшего напряжений на схеме циферблата часов.
Электрические аппараты
Рубильники и переключатели
Рубильники и переключатели служат для замыкания и размыкания вручную электрических цепей переменного тока напряжением до 500 В и постоянного тока напряжением до 440 В. Они устанавливаются на панелях распределительных устройств, в шкафах и ящиках.
Технические данные рубильников и переключателей приведены в табл. 2. 23.
Первая цифра в обозначении аппарата соответствует числу полюсов, вторая соответствует его величине по току: 1 —
100 А, 2 — 250 А, 4 — 400 А, 6 — 600 А. В таблице показаны только аппараты на 100 А.
Рубильники Р и переключатели П изготовляются без дугогасительных камер и могут работать только в качестве разъединителей, т. е. размыкать обесточенные электрические цепи. Рубильники и переключатели прочих типов изготовляются с дугогасительными камерами и могут коммутировать электрические цепи под нагрузкой.
Таблица 2. 23 ДАННЫЕ О РУБИЛЬНИКАХ И ПЕРЕКЛЮЧАТЕЛЯХ
Плавкие предохранители
Предохранители предназначены для защиты электрооборудования и сетей от токов короткого замыкания и недопустимых длительных перегрузок.
Данные плавких предохранителей массового применения показаны в табл. 2. 24. Данные предохранители имеют кварцевое заполнение корпуса в виде кварцевого песка, у предохранителей НПН стеклянный корпус круглого сечения, а у ПН2 — фарфоровый корпус прямоугольного сечения.
Таблица 2. 24 ДАННЫЕ НЕКОТОРЫХ ПЛАВКИХ ПРЕДОХРАНИТЕЛЕЙ
Автоматические выключатели (автоматы)
Автоматы предназначены для защиты от токов короткого замыкания и перегрузки электрических линий и приемников энергии, для включений и отключений линий и приемников энергии.
Данные выключателей массового применения приведены в табл. 2.25.
Выключатель АК63 разработан с целью замены выключателя АП—50, имеющего малую коммутационную способность. Выключатель имеет расцепители максимального тока на 0, 63... 63 А, 500 В переменного и 220 В постоянного напряжения, его коммутационная способность в 2, 5 раза больше, чем у выключателя АП50.
В отличие от выключателей АП50 выключатели АК63 имеют открытые выводы, для закрывания которых могут поставляться крышки.
Открытые выводы, не соприкасающиеся с корпусом выключателя, имеют лучший теплоотвод, а при нагреве выводов не происходит выгорания корпуса выключателя. Автоматические выключатели АЕ2000 разрабатывались с целью замены всех других выключателей на ток до 100 А. Они имеют величины на 25, 63 и 100 А с расцепителями максимального тока на 0, 6 А и выше, тепловыми и комбинированными расцепителями. Выключатели серии АЕ1000 предназначены для защиты участков сетей жилых и общественных зданий. Они являются Таблица 2. 25 АВТОМАТИЧЕСКИЕ ВЫКЛЮЧАТЕЛИ
Примечание: выключатели без расцепителя обозначаются цифрой 7 (например, А3114/7). Продолжение табл. 2. 25
Окончание табл. 2.25
однополюсными с расцепителями тепловыми, электромагнитными или комбинированными на токи 6, 10 и 16 А. Расцепитель любого автоматического выключателя представляет собой блок, встроенный в корпус выключателя и предназначенный для отключения выключателя под действием тока, большего того, на который он настроен. Действие теплового расцепителя основано на изменении формы биметаллической пластинки при протекании по ней тока нагрузки выключателя, большего номинального тока этого выключателя. Пластинка действует на механизм выключения выключателя. Электромагнитный расцепитель состоит из электромагнитов, по катушкам которых проходит ток выключателя. Электромагниты приводятся в действие только при токе аварийной перегрузки, например, заклинивания механизма, или токе короткого замыкания, и воздействуют на механизм отключения выключателя. Комбинированный расцепитель содержит расцепители обоих видов. Для выключателя данной величины может быть несколько расцепителей, имеющих свои разные номинальные токи, которые могут регулироваться. Уставка на ток мгновенного срабатывания, или ток отсечки, означает, что при данном токе срабатывает электромагнитный расцепитель данного выключателя. Предельная коммутационная способность означает предельный ток, который может отключить выключатель. Магнитные пускатели Магнитные пускатели предназначены для дистанционного управления трехфазными асинхронными электродвигателями с короткозамкнутым ротором и другими приемниками энергии. Включение магнитных пускателей может производиться вручную с помощью кнопочного поста и автоматически с помощью датчиков автоматики непосредственно или через промежуточные реле, с помощью блок-контактов других пускателей.
Отключение пускателей производится вручную или при аварийных режимах с помощью реле тепловых или реле максимального тока, при отключении сблокированных с ними других пускателей, при действии устройств автоматики. Данные некоторых пускателей приведены в табл. 2. 26. Пускатели типа ПМЕ и ПА в таблице только нереверсивные. У реверсивных пускателей данные те же, но они состоят из двух пускателей, сблокированных механически и электрически против одновременного включения, а в обозначении типа реверсивных пускателей последняя цифра больше на два, например, ПМЕ—111 — нереверсивный, ПМЕ—113 — реверсивный. Пускатели ПМЕ и ПА заменяются пускателями типов ПМЛ и ПАЕ — см. табл. 2. 27, 2. 28, 2. 29. Таблица 2. 2 6 МАГНИТНЫЕ ПУСКАТЕЛИ
Таблица 2. 27 ДАННЫЕ ПУСКАТЕЛЕЙ ПМЛ И ТЕПЛОВЫХ РЕЛЕ РТЛ
Таблица 2.28 СТРУКТУРА УСЛОВНЫХ ОБОЗНАЧЕНИЙ МАГНИТНЫХ ПУСКАТЕЛЕЙ СЕРИИ ПАЕ
Таблица 2.2 9 ДАННЫЕ СИЛОВОЙ ЦЕПИ МАГНИТНЫХ ПУСКАТЕЛЕЙ СЕРИИ ПАЕ
Тепловые реле Данные тепловых реле приведены в табл. 2. 30. Таблица 2. 30 ТЕХНИЧЕСКИЕ ДАННЫЕ ТЕПЛОВЫХ РЕЛЕ
Окончание табл. 2 30
Тепловые реле могут поставляться в блоке с пускателями или отдельно. Тепловые реле предназначены для защиты от перегрузок асинхронных электродвигателей с короткозамкнутым ротором. Так как они не защищают от коротких замыканий и сами нуждаются в такой защите, то на ответвлении к электродвигателю перед пускателем ставится автоматический выключатель с электромагнитным расцепителем. Чувствительным элементом у реле служит термобиметалл, по которому проходит ток. У реле на большие токи имеется нихромовый нагреватель для дополнительного нагрева биметалла. Чувствительные элементы реле включаются в две фазы электродвигателя, контакты реле включаются в цепь катушки пускателя. Реле максимального тока Токовые реле, или реле максимального тока, применяются для защиты асинхронных электродвигателей с короткозамкнутым ротором от внезапных перегрузок при заклинивании приводимого механизма, например, дозатора муки, ротора дробилки и т. д. В качестве максимального реле применяются электромагнитные реле с последовательным присоединением обмоток в цепь двигателя. Технические данные некоторых реле приведены в табл. 2. 31. Таблица 2. 31 МАКСИМАЛЬНЫЕ РЕЛЕ
Выбор электрических аппаратов для замены вышедших из строя На практике приходится заменять электрические аппараты любого вида. Замена требуется, когда аппарат вышел из строя полностью или когда ремонт на месте не возможен. С течением времени меняется ток, проходящий через аппараты с изменением нагрузки от приемников энергии, заменой электродвигателей и т. д., что также влечет за собой замену аппаратов. В таких случаях необходимы рекомендации по выбору аппаратов. Прежде всего, степень защиты аппарата должна соответствовать условиям той среды, где он будет работать. Номинальный ток аппарата должен быть не меньше расчетного тока нагрузки, напряжение аппарата должно соответствовать напряжению сети, где он будет применяться. Аппараты должны быть устойчивы к току короткого замыкания, который может через них проходить, а те аппараты, которые должны отключать этот ток, должны быть устойчивы при его отключении. Номинальный ток плавкой вставки предохранителя должен быть не меньше расчетного тока цепи, т. е. Iв>Iр. Плавкая вставка не должна перегорать при нормальных перегрузках на данном ответвлении, например, при пусковых токах двигателей. Предохранители не желательно устанавливать на ответвлении к одному двигателю для защиты его от тока короткого замыкания, так как при перегорании одной вставки двигатель выйдет из строя при работе на двух фазах. Ток вставки на ответвлении, где более одного двигателя, Iв=( Iр + Iп)/2.5 где Iр — расчетный ток ответвления, Iп — пусковой ток наиболее мощного двигателя. При тяжелых условиях пуска в знаменателе вместо 2,5 нужно ставить 1,6...2. Плавкие вставки, установленные последовательно в сети, должны работать селективно, т. е. должна перегорать вставка, установленная ближе к месту короткого замыкания, а не наоборот. Для этого практически нужно, чтобы ток вставки, расположенной ближе к месту короткого замыкания, был на одну-две ступени ниже по шкале номинальных токов вставок. Для автоматических выключателей номинальный ток расцепителя должен быть не меньше расчетного тока цепи, т.
е. Iн,расц>=Iр- Автоматический выключатель не должен отключать установку при нормальных перегрузках. Ток уставки регулируемого теплового расцепителя должен быть равен 1,25 расчетного тока цепи, т. е. Iуст, тепл = 1.25Iр. Ток уставки регулируемого электромагнитного расцепителя должен быть пропорционален току наибольшей кратковременной перегрузки: Iуст.эл-магн=1.25Iпер Автоматы для защиты асинхронных двигателей должны удовлетворять следующим условиям. Для двигателей повторно-кратковременного режима при ПВ = 25% или длительного режима с легкими условиями пуска /н, а >Iн.дв Для двигателей, работающих в напряженном повторно-кратковременном режиме и для двигателей с длительным режимом работы с тяжелыми условиями пуска Iн, а>1,5Iн дв, где Iн,а — номинальный ток автомата, Iн,дв — номинальный ток двигателя. Ток уставки электромагнитного элемента должен соответствовать: для двигателя с короткозамкнутым ротором Iуст, эл-магн> (1.5...1,8)Iп, для двигателя с фазовым ротором Iуст , эл-магн > (2,5...3)Iн,дв, где Iп — пусковой ток двигателя. Аппараты защиты по своей отключающей способности должны соответствовать току короткого замыкания при замыкании в ближайшей точке за аппаратом. Все аппараты должны быть защищены от замыканий внутри них предохранителями или автоматами. Реле тепловое выбирают так, чтобы максимальный ток продолжительного режима реле с данным тепловым элементом был не менее номинального тока защищаемого двигателя, ток уставки реле был равен номинальному току защищаемого двигателя, запас регулировки тока уставки на шкале реле должен быть небольшим, особенно в сторону увеличения, т. к. при большом запасе регулировки в сторону увеличения возможно загрубление защиты, когда реле не будет работать. Монтаж и наладка электрических аппаратов Аппараты, имеющиеся в наличии для замены вышедших из строя, часто не подходят по месту установки. Прежде всего может не подходить расположение мест крепления. Тогда приходится на месте установки аппарата делать новые отверстия для крепления, исходя из имеющихся средств.
В металле отверстия могут быть сделаны пробиванием, сверлением ручной или электрической сверлильной машиной, газовой или электрической сваркой, в дереве — сверлением буравами, сверлильной машиной, в стенах или перегородках из каменных материалов — шлямбурами или сверлильными машинами с применением сверл с твердыми наконечниками. При этом для ввертывания винтов в отверстия забиваются деревянные пробки. Может случиться, что новый аппарат по размерам не подходит в данном месте. Тогда его нужно укрепить в другом доступном месте, применив для присоединения другие провода или кабели. В случае необходимости для установки аппарата можно установить дополнительное основание, раму или каркас. При установке аппарата в новом месте нужно обеспечить его доступность для осмотра и ремонта, доступность винта зануления (заземления), свободное открывание крышки корпуса. Следует учесть, что предохранители типов НПН и ПН2 не являются взаимозаменяемыми по способу установки, поэтому при их взаимной замене нужно менять и устройства их фиксации — контактные стойки. Защитные реле монтируют на вертикальной панели обычно под тем пускателем, на отключение которого они воздействуют. Если пускатель смонтирован в отдельном ящике, где предусмотрено место для реле теплового, то оно монтируется там же. Реле тепловые типа РТН монтируют зажимами цепи управления вверх. Реле типа ТРП—25 монтируют зажимами цепи управления вниз, а остальные реле этого типа — зажимами цепи управления вверх. Между металлическим основанием и корпусом реле ТРП—25 ставят изолирующую прокладку. Не гарантируется срабатывание реле в нужный момент, если: рядом с реле (особенно под ним) размещен аппарат или прибор, выделяющий дополнительное тепло (резистор, реостат), реле смонтировано в верхних, наиболее нагреваемых частях ящиков и шкафов, реле и защищаемый двигатель установлены в местах, где значительная разница температур окружающей среды. После монтажа аппаратов производят их наладку, в которую входят внешний осмотр, проверка работы аппаратов без напряжения, проверка схем управления, сигнализации и блокировки, измерение сопротивления изоляции, опробование работы аппаратов и схем под напряжением. Внешний осмотр При внешнем осмотре проверяют: завершение всех монтажных работ; соответствие установленных аппаратов и приборов току нагрузки защищаемого электроприемника и условиям его работы; соответствие напряжении обмоток реле и катушек аппаратов напряжению сети; исправность тепловых элементов реле и соответствие их току защищаемого двигателя; отсутствие вблизи реле теплового дополнительных источников нагрева; отсутствие механических повреждений; правильность установки аппаратов и надежность их крепления; состояние всех контактов аппаратов, отсутствие пыли, грязи, ржавчины, особенно в местах прилегания якоря и сердечника магнитопровода; целость заземляющей проводки от аппаратов до мест присоединения к общей сети заземления (зануления); отсутствие прокладок, подвязок, ограничивающих ход подвижных деталей аппаратов при транспортировке; отсутствие перекосов контактов и подвижных механических частей, их свободный ход; наличие и исправность возвратных пружин подвижных систем; наличие растворов и провалов у глазных контактов и блок-контактов (см.
п. 2.9.9). Величины растворов и провалов должны соответствовать прикладываемой к аппарату инструкции. У реверсивных пускателей проверяют работу механической блокировки против одновременного срабатывания двух контакторов. Проверка аппаратов Аппарат отсоединяется от электрической схемы и измеряется сопротивление изоляции его токоведущих частей. Если монтаж и наладку производит один и тот же электрик, то сопротивление изоляции можно измерять до присоединении аппарата к электрической- схеме. Проверка аппаратов на механическую регулировку включает операции по проверке и устранению замеченных отклонений от нормы: проверка плотности прилегания якоря к ярму; проверка крепления демпферных витков; при необходимости зачистка главных контактов и блок-контактов; проверка отсутствия трения между контактами и дугогасительными камерами; проверка крепления катушки; проверка растворов и провалов главных контактов и при необходимости их регулировка, проверка одновременности замыкания главных контактов, проверка их нажатия. При механической регулировке производится затяжка всех гаек, винтов, установка недостающих деталей. Проверка электромагнитных элементов автоматов и токовых реле, тепловых элементов автоматов и тепловых реле производится при их нагрузке током на специальных стендах опытными специалистами. Этими же специалистами проверяются схемы управления, сигнализации и блокировки. Влияние контактов и контактных соединений на работу электроаппаратов Контакты определяют коммутационную способность аппарата, производящего коммутационные операции. Коммутационными операциями называются операции включения и отключения аппаратов. Операции имеют обозначение, например, О — отключение, В — включение. Коммутационной способностью аппарата называется его способность произвести определенное число коммутационных операций при сохранении работоспособности. Например, для автомата коммутационными операциями являются О—ВО—ВО. Обычно рассматривается предельная коммутационная способность при верхнем пределе коммутируемого тока.
Но аппарат может не коммутировать ток, по величине ниже некоторого предельного, и в этом случае существует интервал критических значений токов. На коммутационную способность аппарата влияет и характер нагрузки коммутируемой цепи. В цепях, содержащих индуктивность и емкость, происходит накопление энергии на индуктивности и емкости, и при разрыве цепи контактами аппарата происходят перенапряжения, что выражается в повышенном искрообразовании от дуги. Поэтому в цепях с такой нагрузкой коммутационная способность контактов ниже. Повторно-кратковременный режим работы электроприемника, управляемого данным аппаратом, отрицательно влияет на контакты, так как происходит частое возникновение дуги при пусковом токе, что увеличивает износ контактов. Приведем определения некоторых величин, относящихся к контактам. Раствор контактов — кратчайшее расстояние между контактными поверхностями подвижного и неподвижного контактов в разомкнутом положении. Начальное нажатие контакта — нажатие пружин на контакт при разомкнутом положении контактов. Конечное нажатие контакта — нажатие в момент окончания замыкания подвижного контакта с неподвижным. Провал контакта — расстояние, на которое может сместиться место конечного касания подвижного контакта с неподвижным из положения полного замыкания, если будет удален жестко закрепленный контакт (подвижный или неподвижный). Значения вышеприведенных величин приведены в табл. 2. 32. Таблица 2.32 ВЕЛИЧИНЫ РАСТВОРА И НАЖАТИЯ КОНТАКТОВ ЭЛЕКТРИЧЕСКИХ АППАРАТОВ
Раствор контактов в аппарате делается таким, чтобы не было затяжной дуги при отключении. Для исключения повторного замыкания контактов после удара механизма об упор при отключении раствор контактов делают не менее 2 мм. На прохождение тока через контакты оказывает влияние переходное сопротивление в месте касания контактов, обусловленное наличием пленок окислов на поверхности контактов. Большое значение в предотвращении образования пленок окислов имеет нажатие на контакты, так как оно препятствует проникновению воздуха в места контакта, разрушает пленки, снижает переходное сопротивление контактов и уменьшает их нагрев. При наладке аппарата проверяют плотность крепления неподвижных контактов, плотность прилегания к ним подвижных контактов во включенном положении.
Определение силы конечного нажатия контактов пускателя ПМЕ-211 показано на рис. 2. 6, а. Предварительно для безопасности отключается напряжение с контактов силовой цепи, потом к подвижному контакту присоединяется динамометр, например, с помощью лески, и пускатель включается. Предварительно под подвижный контакт ложится полоска тонкой бумаги. Подвижный контакт оттягивается с помощью динамометра по линии, перпендикулярной плоскости касания контактов, пока полоска бумаги не будет свободно выниматься, и в этот момент динамометр покажет силу нажатия контактов.
Определение силы начального нажатия контактов показано на рис. 2. 6, б. Полоска бумаги подкладывается под пластинчатую пружину над контактом, пускатель не включается, и контакт так же оттягивается через динамометр, пока не вынется полоска бумаги, и в этот момент определяется сила начального нажатия контакта. Недостаточное начальное нажатие приводит к оплавлению и привариванию контактов, а чрезмерное нажатие — к нечеткому срабатыванию контактора пускателя. При длительном прохождении тока через контакты они нагреваются тем больше, чем больше переходное сопротивление, а медные контакты также окисляются, поэтому аппараты с медными контактами для длительной работы не применяются. С увеличением нагрева контактов переходное сопротивление в месте касания контактов увеличивается до размягчения материала контактов. При размягчении увеличиваются площадки касания контактов, и сопротивление уменьшается. При достижении контактной точкой температуры плавления происходит дальнейшее уменьшение переходного сопротивления, уменьшается количество выделяемой теплоты и место контакта охлаждается, увеличиваются силы сцепления материала контактов. Если эти силы больше, чем разъединяющие силы при отключении аппарата, то его нельзя отключить, что говорит о приваривании контактов. Их можно разъединить только после снятия напряжения с аппарата механическим воздействием. На работу аппаратов влияют различные контактные соединения, которыми они присоединяются к сети, и соединения проводников в сети. На рис. 2. 7 показаны разборные контактные соединения; а-г — алюминиевых проводников с выводами аппаратов, д — соединения алюминиевых шин, е-з — медных проводников с выводами аппаратов. Особенностью алюминия является то, что он образует на поверхности деталей пленку, которая тугоплавка и обладает большим сопротивлением для тока.
Поэтому перед соединением алюминиевые проводники защищаются под слоем кварцевазелиновой пасты, которая затем обтирается и проводники сразу соединяются. Другой особенностью алюминия является текучесть при зажатии гайкой в зажиме, поэтому для присоединения кольца из провода применяются специальные шайбы — звездочки 3 при сечении провода до 10 мм2, при большей площади сечения применяются алюминиевые наконечники и тарельчатые шайбы 6. При отсутствии таких шайб может быть применена вторая гайка — контргайка. С учетом отрицательного влияния соединений медь—алюминий на состояние контакта выводы аппаратов делают лужеными, а если они не луженые, то соединения медь—алюминий не применяются в сырых помещениях, если аппараты не герметичны.
Рис. 2.7. Разборные контактные соединения: а) -д) присоединения алюминиевых проводников: а), б), в) — присоединения к плоским выводам электрических аппаратов; а) присоединение провода, согнутого на конце в кольцо: 1 — винт, 2 — шайба пружинная, 3 — шайба-звездочка; б), в) 4 — болт, 5 — гайка, 6 — шайба тарельчатая, 7 — шайбы, 8 — наконечники; г) присоединение к штыревому выводу: 9 — шпилька; д) соединение алюминиевых шин; е), ж) присоединение медных проводников к плоским выводам аппаратов; е) присоединение провода, согнутого на конце в кольцо: 1— винт, 2 — шайба пружинная, 3 — шайба; ж) 4— болт, 5 — гайка, 6 — шайба пружинная, 7 — шайба; я) гнездовой зажим. Для присоединения конца медного провода в виде кольца или с наконечником применяется шайба и пружинная шайба, а при отсутствии пружинной шайбы применяется контргайка. На рис. 2.8 показаны неразборные соединения пайкой — а, прессованием — б, г, сваркой — в, д.
Рис. 2. 8. Неразборные соединения: о) паяные соединения медных проводов. Подготовка к панке: 1 — проводов, 2 — присоединения провода к выводу; 1, 2 — готовые соединения; б) оконцевание трубчатым наконечником прессованием; в) оконцевание литым наконечником сваркой: 1 — вверху — наконечник после прессования, внизу — он же, покрытый изолентой, 2 — то же литой наконечник; г) соединение проводов прессованием. 3 — гильза; д) соединение проводов сваркой: 4 — форма; б)-д): 5 — изолента. На рис. 2.9 показано разъемное контактное соединение для трехфазной сети.
Такие соединения применяют для присоединение кабелей передвижных машин и инструментов к источнику питания. При этом для безопасности нужно помнить, что часть соединения, содержащая гнезда, присоединяется к источнику питания, стержень 1 для заземления или зануления всегда длиннее других, чтобы при соединении разъема этот стержень входил в гнездо первым, подготавливая цепь заземления или зануления, а при рассоединении выходил последним, когда силовая цепь уже рассоединена. Для предотвращения рассоединения разъема или ослабления контактов должен быть специальный замок, предотвращающий рассоединение. На таком же принципе устроены разъемы для однофазной сети с двумя рабочими контактами и одним зануляющим или заземляющим, или просто с двумя контактами, в том числе и обычные розетки с вилками. Нужно постоянно следить за контактами аппаратов, разъемов и соединений, так как от их состояния зависит надежность работы электроустановок. Неисправности электрических аппаратов Основные неисправности электрических аппаратов приведены в табл. 2.33. Таблица 2.33 ОТКАЗЫ ЭЛЕКТРИЧЕСКИХ АППАРАТОВ
Продолжение табл. 2.33
Продолжение табл. 2.33
Продолжение табл. 2.33
Продолжение табл. 2.33
Окончание табл. 2.33
Примечание. Несимметрия питающего напряжения обычно выражается в понижении напряжения одной из фаз. Причиной часто является сгорание зажима или перегорание предохранителя в сети до того места, где эта несимметрия ощущается. Место повреждения можно найти, измеряя напряжения в фазах относительно земли, двигаясь по направлению к питающему трансформатору. Если неисправность на участке другой службы, то об этом сообщается электрикам этой службы.
Рис. 2.10. Отсутствие касания контактов пускателя: а) наличие препятствия между контактами; 6) контакты отпаялись от мостика.
Рис. 2.11. Неплотное прилегание якоря электромагнита пускателя: 1 — воздушный зазор.
Рис. 2.12. Неисправности кнопочного поста управления типа ПКЕ—222—2У2 — заклинивание кнопки «Ход» во включенном положении и замыкание неподвижных контактов кнопки «Стоп» по пластмассовому корпусу: 1 — место замыкания
Рис. 2.13. Автомат не отключается и его нельзя подготовить к включению — препятствие ходу рукоятки автомата при отводе ее назад.
Рис. 2.14. Нож рубильника не входит в контактную стойку.
Рис. 2.9. Принцип ycтройства разъемною контактного соединения. 1 — зануляющий (заземляющий) стержень с гнездом, 2 — силовые стержни с гнездами, 3 — изоляционные распорные диски, 4 —- замок, 5 — жили кабеля, б — корпус половины разъема.
Электронные лампы
2.5. Электронные лампы
Несмотря на то, что электронные лампы стараются не применять в новых разработках электронной аппаратуры, их можно встретить в используемой в настоящее время аппаратуре. Лампы различаются числом электродов (от 3 до 9) и в
зависимости от этого называются: триод, тетрод, пентод, гексод, гептод, октод.и эннод. Двухэлектродная лампа — диод не имеет управляющих сеток и применяется для выпрямления переменного тока.
Приемно-усилительные лампы имеют обозначения, состоящие из четырех элементов. Первый элемент — напряжение накала катода лампы, округленное до целого числа вольт, второй — буква, показывающая тип лампы. Например, маломощные диоды имеют букву Д, двойные диоды — X, диоды для выпрямления переменного тока — Ц, триоды — С, двойные диоды — Н, тетроды — Э, выходные пентоды — П, маломощные пентоды — Ж. Третий элемент — номер разработки, четвертый — буква, показывающая конструктивное оформление: С — стеклянная лампа с баллоном диаметром более 22,5 мм, П — стеклянная миниатюрная («пальчиковая») с баллоном 19 и 22,5 мм, Р, А, Б, Г — сверхминиатюрные стеклянные лампы и т. д. Отсутствие буквы означает металлический баллон.
Параметры некоторых ламп, применяемых в электронной аппаратуре, приводятся в табл. 2.10.
Таблица 2.10 ДАННЫЕ НЕКОТОРЫХ ЭЛЕКТРОННЫХ ЛАМП
Условные обозначения:
Rк— сопротивление в цепи катода ламп;
ВЧ — высокая частота;
НЧ — низкая частота
Крутизна характеристики показывает, на сколько изменяется анодный ток лампы при изменении напряжения управляющей сетки на 1 В.
Внутреннее сопротивление показывает, на сколько вольт надо изменить напряжение на аноде лампы, чтобы ее анодный ток изменился на 1 мА.
Электронные лампы считаются наименее надежными элементами аппаратуры. Внезапные отказы ламп обусловлены перегоранием нити накала, потерей вакуума, обрывами и замыканиями элементов.
Постепенные отказы обусловлены снижением эмиссионной способности катода, величины токов, выходной мощности, ростом сеточных токов.
Надежность ламп зависит от их качества, температуры катода при работе, тока эмиссии катода, напряжения на электродах, от мощностей, рассеиваемых на них, тока управляющей сетки, температуры баллона, микроклимата в месте установки, механических нагрузок.
Различие в качестве ламп приводит к разбросу их параметров, что при равных условиях работы в схеме приводит к их различной надежности. Перегрев катода происходит при повышенном напряжении накала. Это приводит к усилению протекания всех физико-химических процессов в лампе и выходу ее из строя. Понижение напряжения накала на несколько процентов ведет к повышению надежности ламп, при этом напряжение должно быть стабилизировано, чтобы не допустить дальнейшего его понижения. Частой причиной выхода из строя ламп является снижение сопротивления изоляции и пробой ее у подогревателей катодов. Это происходит потому, что атомы вольфрама нити накала подогревателя диффундируют в его изоляцию, ухудшая ее свойства. Происходит пробой этой изоляции, короткое замыкание подогревателя на катод и перегорание подогревателя. Процессы ухудшения изоляции подогревателя происходят более интенсивно при большой температуре подогревателя и увеличенном напряжении между катодом и подогревателем. Поэтому не следует допускать повышения напряжения накала подогревателя. При эксплуатации ламп нужно следить, чтобы между катодом и подогревателем не превышали допустимых пределов ток утечки и напряжение. При больших напряжениях на аноде и экранной сетке возможны изменения траектории электронов, часть электронов попадает на детали лампы, образуя электрические заряды, которые искажают электрические поля и изменяют параметры ламп. Увеличивается энергия электронов, которые бомбардируют детали лампы, вызывают выделение газа и ухудшение вакуума, разогрев баллона и других деталей и, как следствие, ухудшение параметров лампы. Температура баллона оказывает большое влияние на надежность ламп. При увеличении температуры увеличивается интенсивность газовыделения из стекла и его электролиза, который изменяет химический состав стекла и его коэффициент расширения, что может вызвать разгерметизацию в месте выводов. Снижение вакуума в лампе отрицательно влияет на работу катода. Так как стекло баллона почти не прозрачно для инфракрасного излучения, тепло при нагреве электродов лампы передается баллону.
Оно отводится за счет конвекции, лучеиспускания и теплопроводности; Теплоотвод для ламп небольшой мощности обычно не предусматривается, и перегрев баллонов является обычным явлением. При перегреве происходят механические разрушения ламп, видимые снаружи. Например, отваливаются колпачки выводов анодов ламп, окисляются штырьки выводов и ухудшаются контакты лампы со схемой. Происходит нагрев ламповой панели и, если она не керамическая, через несколько лет подгорает и рассыпается, что ухудшает контакты штырьков в гнездах. Тогда нужно заменять панель на другую, желательно керамическую, хотя и в ней не исключено плохое касание штырьков, их нагрев и ухудшение контакта. Для понижения температуры баллона лампы можно ставить на нее вплотную к баллону медные или латунные экраны, которые улучшают теплоотвод, принимая тепло на себя и отводя его. Если они мало эффективны, то можно применять радиаторы с хорошим теплоотводом. Тепловой режим лампы определяют мощности, рассеиваемые на электродах, и температура среды в месте установки лампы. Поэтому при других нормальных условиях нагрузка на лампу и температура среды определяют срок ее службы. Длительные вибрации и сотрясения приводят также к выходу из строя ламп. При выходе из строя лампа заменяется на другую такую же, но может быть заменена и на лампу другого типа, если соответствуют ее схема и конструкция. Отказы ламп можно определить по внешним признакам — нить накала лампы не светится, или нить накала светится, но лампа не греется, как обычно. В первом случае, если нити накала других ламп светятся, причина может быть в том, что не подходит напряжение накала к подогревателю катода. Причина же этого явления заключается в окислении штырьков выводов электродов лампы или в окислении гнезд панели лампы. В таком случае штырьки можно почистить, например, надфилем, а гнезда — четырехгранным шилом. Внутренней причиной несвечения нити накала лампы является перегорание подогревателя катода лампы. В таком случае лампу нужно менять. Если нить накала лампы светится, но лампа не греется, как обычно, то значит, что через нее не проходит поток электронов, т.е. электрический ток. Причина может быть во внешней цепи, когда к лампе не подходят нужные напряжения. Это можно проверить измерением напряжений в схеме у штырьков лампы. При отсутствии напряжений или их уменьшении более чем на 20% причину нужно искать во внешней цепи. Другой причиной, при наличии напряжений, может быть потеря эмиссии катодом лампы. В таком случае лампу нужно менять. Белый налет внутри лампы, ее необычное свечение также говорят о выходе из строя лампы.
Катушки электрических аппаратов
Катушкой называется обмотка изолированного провода, намотанная на каркас или без каркаса, имеющая выводы для присоединения. Каркас изготовляется из картона или пластмассы. Катушки служат для создания магнитного потока, который создает движущие силы для работы аппаратов или индуктивное сопротивление, когда катушка является дросселем.
Катушки можно разделить на два вида: токовые, содержащие небольшое количество витков провода площадью сечения, соответствующей силе проходящего тока, и катушки напряжения, содержащие большое количество витков провода небольшого сечения.
Катушки применяются в электромагнитах пускателей и реле, расцепителей автоматических выключателей, электрических тормозов, в электроизмерительных приборах, в пуско-регулирующих аппаратах люминесцентных ламп в качестве дросселей, в блоках питания аппаратуры автоматики и радиоэлектроники также в виде дросселей.
Изоляция катушки подвергается перенапряжениям — скачкам напряжения при разрыве цепи ее обмотки, зависящим от скорости размыкания цепи, числа витков ее обмотки, магнитной системы аппарата. Эти перенапряжения могут передаваться на другие реле, вызывая их ложное срабатывание.
Перенапряжения также могут передаваться из внешней цепи при включении катушек других аппаратов.
Электрическая прочность изоляции катушки проверяется согласно гл. 5.
Катушки одинаковых размеров могут изготовляться на разное напряжение — переменное 36, 110, 220, 380, 660 В и постоянное 6, 12, 24, 36, 48, 60, 110, 220, 440 В. Поэтому катушки новых аппаратов нужно проверять на соответствие напряжения, на которое они изготовлены, напряжению сети, что можно сделать по этикетке на общей изоляции обмотки катушки. То же делается и при замене вышедшей из строя катушки, при этом если на поверхности катушки нет этикетки, то можно измерить ее сопротивление и сравнить с такой же катушкой другого аппарата. При наладке нового аппарата или замене катушки перед ее укреплением на месте нужно проверить, не касаются ли подвижные детали электромагнита изоляции катушки, и если касаются, то нужно ее поставить так, чтобы не было касания, или отрегулировать ход подвижных деталей, и только после этого укреплять катушку.
Нужно проследить, чтобы не было воздушного зазора при касании якоря и сердечника электромагнита, так как при наличии воздушного зазора уменьшается индуктивное сопротивление обмотки, увеличивается ток, и катушка может перегреться и выйти из строя.
При присоединении катушки постоянного тока нужно соблюдать полярность, когда аппарат, например, поляризационное реле, реагирует на направление тока.
Перегрев катушки ведет к увеличению активного сопротивпения провода, уменьшению тока и силы, притягивающей сердечник электромагнита, что может вызвать ложное срабатывание реле, увеличение воздушного зазора между якорем
сердечником и еще больший перегрев катушки и сгорание изоляции ее обмотки.
Поэтому нужно следить, чтобы катушки не нагревались от посторонних источников тепла, например, от резисторов, установленных рядом и особенно ниже катушки. Высокая температура катушки может быть обусловлена высокой температурой в помещении, где установлена аппаратура, высокой температурой в шкафу управления из-за выделения тепла аппаратами, перегревом аппарата, на котором установлена катушка. Перегрев катушки аппарата может быть также при его частом включении—отключении. Высокая температура катушки также приводит к уменьшению сопротивления изоляции провода обмотки. При высокой температуре возможны обрывы провода при разном температурном расширении провода и каркаса катушки. Высокая температура ведет к ускорению процессов старения изоляции катушки. Влага может проникать в катушку через общую изоляцию, изоляцию между слоями к проводу и способствовать уменьшению сопротивления изоляции провода. Это может вызвать замыкание между слоями намотки или между витками в слое. В результате замыкания может быть обрыв провода или шунтирование части витков, что будет способствовать перегреву катушки. При низкой температуре влага может замерзать в катушке и способствовать выходу ее из строя. Низкая температура также способствует уменьшению надежности катушки, так как при этом могут быть местные напряжения в проводах и изоляции в результате уменьшения объемов материалов при охлаждении. На катушки влияют механические воздействия в виде вибрации и сотрясений, вызывая разрушающие механические напряжения в деталях катушки. В результате воздействий на катушку, рассмотренных выше, в катушке могут быть нарушения цепи для тока из-за обрыва провода внутри катушки, обрывов выводов, окисления выводных зажимов, сгорание изоляции части витков или полное сгорание изоляции обмотки. В последнем случае говорят, что катушка сгорела. Заменять катушку нужно при обрыве провода внутри катушки или замыкании витков с различными последствиями. При проверке катушки после отказа полное сгорание ее изоляции видно сразу, так как обычно сгорает наружная изоляция катушки.
Если наружная изоляция не сгорела, но катушка не работает, то, отогнув наружную изоляцию, можно увидеть сгоревшую изоляцию провода Проверку провода катушки на обрыв можно производить с помощью индикатора напряжения, омметра или мегаомметра. При проверке катушки с помощью индикатора напряжения при исправной обмотке и наличии напряжения на одном выводе катушки оно должно быть и на другом выводе. Этот последний вывод должен быть отсоединен от сети для устранения ошибок при измерении. Омметр, присоединенный к выводам катушки, при исправной катушке покажет ее сопротивление согласно паспорта, а при наличии замыкания витков покажет меньшее сопротивление, но если замыкание витков происходит только под действием напряжения, то омметр может и не показать изменение сопротивления. Мегаомметр при исправной катушке покажет сопротивление ее обмотки при измерении в килоомах немногим более 0, но меньше 1 кОм, и при измерении в мегаомах — 0, так как сопротивление катушки измеряется в омах.
Конденсаторы
В основу классификации конденсаторов положено деление их на группы по виду применяемого диэлектрика и по конструктивным особенностям.
Сокращенное обозначение конденсатора состоит из букв и цифр. Первый элемент обозначения — буква или сочетание букв — обозначает подкласс конденсатора: К — постоянной емкости, КТ — подстроечные, КП — переменной емкости. Второй элемент означает группу конденсаторов в зависимости от вида диэлектрика (табл. 2. 6). Третий элемент пишется через дефис и соответствует порядковому номеру разработки. В состав второго и третьего элементов могут входить буквы.
Таблица 2. 6 УСЛОВНОЕ ОБОЗНАЧЕНИЕ НЕКОТОРЫХ КОНДЕНСАТОРОВ В ЗАВИСИМОСТИ ОТ МАТЕРИАЛА ДИЭЛЕКТРИКА
Для старых типов конденсаторов в основу условных обозначений брались конструктивные, технологические и другие признаки: КД — конденсаторы дисковые, ФТ — фторопластовые теплостойкие, КТП — конденсаторы трубчатые проходные.
Маркировка конденсатора содержит, если позволяют размеры корпуса, его тип, номинальное напряжение, емкость, допуск, группу ТКЕ, а если размеры не позволяют, то применяется цветовая маркировка (табл. 2. 7).
Таблица 2.7 ЦВЕТОВЫЕ КОДЫ ДЛЯ МАРКИРОВКИ КОНДЕНСАТОРОВ (В ВИДЕ ТОЧЕК ИЛИ ПОЛОС)
Полное обозначение номинальных емкостей состоит из чисел величины емкости и единицы измерения (пф — пикофарада, мкФ — микрофарада, Ф — Фарада).
Кодированное обозначение номинальных емкостей содержит две или три цифры и букву. Буква из русского или латинского алфавита обозначает название доли фарады или целой фарады: П (р) — пикофарада = 10^-12 Ф, Н (п) — нанофарада = 10^-9 Ф, М (ц) — микрофарада = 10^-6 Ф, Ф (F) — фарада. Например, емкость 2,2 пф обозначается 2П2 (2р2), 1500 нФ — 1Н5 (1n5); 1 мкФ - М1 (ц1), 10 мкФ - 10М (10ц), 1 Ф - 1Ф0 (1F0).
Допускаемые отклонения емкости обозначаются цифрами или кодом (табл. 2.8).
Т а б л и ц а 2.8 ДОПУСКАЕМЫЕ ОТКЛОНЕНИЯ ЕМКОСТИ КОНДЕНСАТОРА ОТ НОМИНАЛЬНОГО ЗНАЧЕНИЯ
Параметрами конденсаторов являются номинальная емкость, номинальное напряжение. Тангенс угла потерь характеризует активные потери энергии в конденсаторе.
Величина, обратная тангенсу угла потерь, называется добротностью конденсатора. Сопротивление изоляции и ток утечки характеризуют качество диэлектрика. Наиболее высокое сопротивление изоляции имеют фторопластовые, полистирольные и полипропиленовые конденсаторы, несколько ниже оно у керамических и поликарбонатных. Для оксидно-электролитических конденсаторов задается ток утечки, значение которого пропорционально емкости и напряжению. Наименьший ток утечки имеют танталовые конденсаторы (от единиц до десятков микроампер), а у алюминиевых конденсаторов он на один-два порядка больше. Температурный коэффициент емкости (ТКЕ) определяет относительное изменение емкости при изменении температуры конденсатора на 1 С. Данные некоторых конденсаторов приведены в табл. 2.9. Большинство отказов конденсаторов происходит из-за пробоя и перекрытия, бывают отказы из-за механических повреждений, уменьшения емкости и сопротивления изоляции. Выход из строя диэлектрика конденсатора может происходить за счет пробоя в объеме диэлектрика и разряда по его поверхности. Пробой происходит, когда напряженность электрического поля превышает определенное значение для данного диэлектрика — пробивную напряженность, характеризующую электрическую прочность диэлектрика. Для твердых диэлектриков характерны две формы пробоя - электрический и тепловой. Таблица 2. 9 ДАННЫЕ НЕКОТОРЫХ КОНДЕНСАТОРОВ
* Для ряда промежуточных емкостей. Окончание табл. 2. 9
В основе электрического пробоя находится ударная ионизация электронами материала диэлектрика, в результате чего увеличивается количество носителей заряда. Происходит пробои, который может сжечь диэлектрик или прожечь в его объеме канал. Электрический разряд по поверхности диэлектрика может быть в воздухе над ним или по самой поверхности диэлектрика с образованием дорожек. Тепловой пробой происходит в результате нарушения теплового равновесия в диэлектрике, когда нагрев диэлектрика при электрической нагрузке превышает отвод тепла. Происходит уменьшение электрического сопротивления, и электрической прочности диэлектрика, что приводит к электрическому пробою.
Повреждение имеет вид проводящего канала. Обычно пробой происходит в результате ряда факторов: электрической нагрузки, механической нагрузки, влажности, высокой внешней температуры. Пробой выражается в виде проводящего канала от одной до другой обкладки. В процессе хранения и работы конденсатора могут происходить обратимые и необратимые изменения его параметров. Вышедшие из строя конденсаторы иногда можно определить по внешнему виду, например, у электролитических конденсаторов может быть вздутие корпуса, у малогабаритных — следы сгорания. Проверяется также прочность крепления выводов. Тем же проверкам подвергаются и новые конденсаторы, предназначенные для замены. При этом проверяется соответствие их параметров, указанных на корпусе, электрической схеме. У конденсаторов переменной емкости проверяют плавность вращения ротора, отсутствие заеданий и люфтов. Окончательные сведения о состоянии конденсатора может дать его электрическая проверка с помощью приборов, которая заключается в следующем: проверка на короткое замыкание и пробой; измерение сопротивления изоляции, у электролитических конденсаторов — тока утечки; измерение емкости; проверка целости выводов. Проверка неэлектролитических конденсаторов заключается в следующем. Конденсаторы на короткое замыкание проверяют омметром на максимальных пределах измерения, измеряя сопротивление между выводами и между выводами и корпусом, если корпус металлический. Если емкость конденсатора больше 1 мкф, и он исправен, то после присоединения омметра конденсатор заряжается и стрелка прибора отклоняется в сторону 0, причем отклонение зависит от емкости конденсатора, типа прибора и напряжения источника питания, потом стрелка медленно возвращается к положению около оо. При наличии утечки омметр показывает малое, сопротивление — сотни и тысячи Ом, величина которого Зависит от емкости и типа конденсатора. При проверке исправных конденсаторов емкостью меньше 1 мкф стрелка прибора не отклоняется, потому что малы ток заряда конденсатора и время заряда.
При пробое конденсатора его сопротивление около 0. При проверке омметром нельзя установить пробой конденсатора, если он происходит при рабочем напряжении. В таком случае можно проверить конденсатор мегаомметром при напряжении прибора, не превышающем рабочее напряжение конденсатора. Конденсаторы переменной емкости проверяют на пробой при плавном повороте ротора. Проверить конденсатор на пробой-можно на специальной испытательной установке, прикладывая между выводами и каждым выводом и корпусом повышенное напряжение, превышающее номинальное в 1.5...3 раза в течение 10...60 с, в зависимости от типа конденсатора. Сопротивление изоляции конденсатора между выводами и каждым выводом и корпусом проверяют ламповым мегаомметром. При этом сопротивление изоляции бумажных конденсаторов сотни и тысячи мегом, остальных — десятки и сотни тысяч мегом. Проверка электролитических конденсаторов заключается в наблюдении заряда конденсатора от источника питания тестера. При этом от конденсатора отпаивают детали, если он в схеме, и разряжают его, подготавливают прибор для измерения больших сопротивлений, гнездо общее прибора должно быть соединено с положительным выводом конденсатора, а гнездо сопротивлений — с корпусом конденсатора. Если конденсатор исправен, то стрелка прибора быстро движется к нулю, а затем устанавливается около знака оо. Если конденсатор потерял емкость, то стрелка прибора почти не отклоняется, а если имеет значительную утечку, то стрелка отклоняется почти до нуля и устанавливается далеко от знака со. Клиновые конденсаторы не имеют выводов и впаиваются в вырезы печатных плат. При этом в корпусе конденсатора могут образоваться трещины, нарушающие работу конденсатора или создающие помехи. Поэтому при проверке таких конденсаторов нужно обращать внимание на их целость При выборе конденсатора для замены нужно ориентироваться на заменяемый конденсатор, если на его корпусе есть данные о его параметрах. Если данных нет, то нужно пользоваться схемой этого или сходного устройства, а если ее нет, то приходится ставить конденсатор, похожий по внешнему виду.
При этом нужно учитывать условия эксплуатации и руководствоваться следующим. Номинальное напряжение конденсатора определяют с учетом постоянной и переменной составляющих напряжения в месте установки конденсатора. Сумма постоянной и амплитуды переменной составляющих не должна превышать номинального напряжения, а для электролитических конденсаторов амплитуда переменной составляющей не должна превышать величины постоянной составляющей. Рабочее напряжение электролитических конденсаторов должно быть ниже номинального на 10... 20%, так как пробивное напряжение для них близко к номинальному. В цепях с высокой стабильностью параметров, например, в колебательных контурах, применяют керамические и воздушные конденсаторы с высоким классом точности. В цепях, к которым не предъявляются высокие требования по стабильности параметров, например, в фильтрах развязки, применяют бумажные конденсаторы. В некоторых цепях существуют высокие требования к сопротивлению изоляции, например, к конденсаторам связи между соседними каскадами. В этом случае применяют слюдяные конденсаторы. В цепях высокой частоты применяют конденсаторы с высокой предельной частотой. Бумажные конденсаторы не применяют в цепях с частотой, превышающей единицы мегагерц. В цепях высокой частоты применяют керамические и вакуумные конденсаторы. Электролитические и бумажные конденсаторы применяют в цепях сглаживающих фильтров выпрямителей, фильтров развязки и блокировки. При этом требуются конденсаторы большой емкости. В этих цепях применяются также сегнетоэлектрические конденсаторы. В цепях при напряжении менее 10 В не рекомендуется применять конденсаторы с вкладными выводами, так как в них может нарушиться контакт с фольгой. Герметизированные конденсаторы в металлическом корпусе имеют большую емкость на корпус. Если при монтаже ни один вывод конденсатора не соединяется с шасси устройства, то конденсатор необходимо изолировать от шасси на опорах толщиной 0.5...1 см. Для малогабаритной аппаратуры необходимо выбирать малогабаритные конденсаторы.. Конденсаторы могут применяться в цепях постоянного и переменного напряжения.
Для цепей постоянного тока применяются в основном электролитические конденсаторы, у которых с одного конца корпуса выходит один или несколько изолированных выводов. При монтаже конденсатора эти выводы присоединяются к положительному полюсу цепи с учетом соответствия напряжений участков цепи и выводов конденсатора, а корпус конденсатора присоединяется к металлическому корпусу устройства. Если у электролитического конденсатора другая конструкция, то полярность его выводов обозначается знаками <+» и «—». Следует учесть, что могут быть и неполярные электролитические конденсаторы. Если полярный конденсатор включить в сеть переменного напряжения, то через его диэлектрик пойдет переменный ток, нагревая конденсатор, и он может выйти из строя. В крайнем случае, при отсутствии нужного конденсатора на переменное напряжение вместо него можно применить полярный конденсатор при условии, что его напряжение много больше напряжения сети. Например, полярный конденсатор с напряжением 250 В может работать в сети переменного напряжения 50 В при частоте 50 Гц. Внешними признаками выхода из строя бумажных и электролитических конденсаторов являются вздутие корпуса, отрыв торцевых изолирующих частей у выводов, отрыв выводов. Керамические конденсаторы могут обугливаться или разрушаться. Признаки внутренних неисправностей могут быть выявлены только при измерениях, о чем говорилось выше. При любой неисправности конденсатор должен быть заменен.
Машины постоянного тока
Схема машины постоянного тока показана на рис. 2.25. Обмотка якоря 2 расположена на роторе и представляет собой замкнутую многофазную обмотку, подключенную к коллектору, состоящему из коллекторных пластин 3, изолированных друг от друга, и щеток А и В. Коллектор связывает обмотку якоря с внешней цепью нагрузки при работе машины генератором или с сетью питания при работе двигателем. Обмотка возбуждения располагается на полюсах статора и присоединяется к независимому источнику постоянного тока или к якорю. Магнитный поток возбуждения Фв этой обмотки неподвижен в пространстве.
Рис. 2.25. Схема машины постоянного тока:
1 — обмотка возбуждения, 2 — обмотка якоря, 3 — пластины коллектора, А, В — щетки, Фв — магнитный поток возбуждения.
При вращении обмотки якоря в неподвижном магнитном . поле в ней индуцируется ЭДС с частотой
f2=p*n/60
Коллектор осуществляет согласование частоты f2 с частотой сети постоянного тока f1 = 0, т: е. преобразует переменную ЭДС, индуцированную в обмотке якоря, в постоянную ЭДС между щетками А и В коллектора, и во внешней цепи протекает постоянный ток.
При холостом ходе машины магнитный поток создается только обмоткой возбуждения. При работе машины под нагрузкой обмотка якоря создает свой магнитный поток.
Реакция якоря машины постоянного тока — воздействие магнитного поля якоря на магнитное поле машины. В результате реакции якоря магнитное поле машины искажается, что ведет к искрению под щетками. Кроме того, под действием реакции якоря магнитный поток машины при насыщенной магнитной цепи уменьшается, что приводит к уменьшению ЭДС по сравнению с ее значением при холостом ходе.
Для исключения этого явления делают некоторые изменения в конструкции машины, но действенной мерой является применение компенсационной обмотки, которая располагается в пазах главных полюсов и включается последовательно в цепь якоря таким образом, чтобы ее намагничивающая сила была направлена встречно с намагничивающей силой якоря и компенсировала ее действие. Компенсационная обмотка применяется в машинах средней и большой мощности.
Генераторы постоянного тока
Свойства генераторов зависят от способа питания их обмоток возбуждения, и в зависимости от этого они подразделяются на группы:
1 — генераторы с независимым возбуждением, обмотка возбуждения которых получает питание от независимого источника — рис. 2.26;
Рис. 2.26. Схема генератора независимого возбуждения: Е — ЭДС генератора, U — напряжение на зажимах генератора, Iа,Iв,Iнагр — токи в цепях якоря, возбуждения и нагрузки, Rнагр — сопротивление нагрузки. грв — сопротивление регулирующего реостата в цепи возбуждения. 2 — генераторы с параллельным возбуждением, обмотка возбуждения которых присоединяется параллельно обмотке якоря — рис. 2.27; 3 — генераторы с последовательным возбуждением, обмотка возбуждения которых включается последовательно с обмоткой якоря — рис. 2.28; 4 — генераторы со смешанным возбуждением, у которых применяются обмотки параллельная и последовательная — рис. 2.29.
Двигатели постоянного тока Свойства двигателей, как и генераторов, различаются в зависимости от способа включения обмотки возбуждения. Применяются двигатели с последовательным возбуждением — рис. 2.30, с параллельным возбуждением — рис. 2.31, со смешанным возбуждением — рис. 2.32. Новым поколением двигателей постоянного тока являются двигатели серии 4П. Они различаются: 1 — по регулировочным свойствам — с нормальным регулированием частоты вращения — до 1 : 5, и с широким регулированием — до 1 : 1000;
Рис. 2.30. Схема двигателя с последовательным возбуждением: Rп — сопротивление регулирующего реостата цепи последовательного возбуждения.
2 — по типу конструкции: закрытые со степенью защиты IР44; защищенные со степенью защиты IР23; 3 — по условиям эксплуатации: нормальным, соответствующим значениям климатических факторов внешней среды УХЛ4 и в части воздействия механических факторов внешней среды — группе М1; тяжелым условиям эксплуатации (УХЛЗ и М8), соответствующим работе во вспомогательных механизмах металлургического производства и др. Для большинства двигателей номинальное напряжение — 110 и 220 В, диапазон частот вращения — 750...4000 об/мин. Разновидности двигателей серии 4П показаны в табл. 2.43. Применяются также двигатели серий 2П и П. Неисправности и отказы двигателей постоянного тока показаны в табл. 2.44. Микромашины Примером микромашин могут служить универсальные коллекторные двигатели, которые широко применяются в устройствах автоматики и в бытовых машинах.
Питание двигателей может осуществляться как от источников переменного однофазного тока, так и от источников постоянного тока. По принципу устройства двигатель сходен с двигателем последовательного возбуждения. Отличие заключается в конструкции магнитной системы и в том, что катушки его обмотки возбуждения состоят из двух секций с промежуточными выводами — рис. 2.33. Секционирование обмотки делается потому, что при работе на переменном токе из-за падения напряжения в индуктивном сопротивлении обмоток частота вращения двигателя оказывается меньше, чем на постоянном токе. Для выравнивания скоростей при работе на постоянном токе включаются все витки обмотки возбуждения, а при работе на переменном токе только часть их.
Рис. 2.33. Схема универсального коллекторного микродвигателя: В1,В2 — обмотки возбуждения. Таблица 2.43 РАЗНОВИДНОСТИ ДВИГАТЕЛЕЙ СЕРИИ 4П
Неисправности и отказы электрических машин
Большинство неисправностей и отказов электрических машин разного принципа действия приведены в табл. 2.44. Многие неисправности один электрик устранить не в состоянии, поэтому подробно устранение таких неисправностей не приводится. При выходе из строя обмотки машина отправляется в капитальный ремонт (имеется в виду, что размеры и вес машины позволяют ее перевозить обычным транспортом). Также приведены некоторые сведения по устранению часто встречающихся неисправностей — вибраций и снижения сопротивления изоляции.
Таблица 2.44 НЕИСПРАВНОСТИ И ОТКАЗЫ ЭЛЕКТРИЧЕСКИХ МАШИН
Продолжение табл. 2.44
Продолжение табл. 2.44
Продолжение табл. 2.44
Продолжение табл. 2.44
Продолжение табл. 2.44
Продолжение табл. 2.44
Окончание табл. 2.44
Устранение вибраций электрических машин
Электрические машины часто подвергаются вибрации со стороны механизмов, связанных с ними, например, колес турбомашин-вентиляторов, дымососов и т. д. При этом ослабляется крепление двигателей и рабочих машин, выходят из строя подшипники и другие детали двигателей и рабочих машин. Часто пытаются устранить это явление усилением крепления двигателя и рабочей машины, установкой машины на пружины, но это не помогает.
Дело в том, что в данных случаях причиной бывает неуравновешенность рабочего колеса машины относительно его оси из-за того, что в какой-то его части сосредоточена масса больше, чем в противоположной, и эта часть с большой массой всегда оказывается внизу, если колесо вращать от руки, а потом дать возможность остановиться.
Устранить явление можно привариванием к колесу в более легкой части, которая оказывается наверху, уравновешивающего груза. Если есть возможность, лучше всего приварить болт, а потом на него накручивать гайки, пока эта часть будет не на верху, а в разных местах при нескольких остановках при вращении от руки. После этого гайки нужно приваривать к болту — рис. 2.34.
Рис. 2.34. Уравновешивание рабочего колеса дымососа.
Вибрация возможна и при вертикальном положении оси
колеса.
В таком случае колесо вместе с двигателем нужно снять и установить в горизонтальном положении на опорах для балансировки тем же способом.
Сушка электрических машин
Увлажнение изоляции электрических машин может произойти из-за условий внешней среды, в которых находится машина во время транспортировки, хранения, монтажа или эксплуатации.
Поэтому необходимо проверять сопротивление изоляции электрических машин перед их монтажом, после работы на открытом воздухе или в помещении с повышенной влажностью перед новым сезоном работы в этих условиях (сельское хозяйство), после перерывов в работе и периодически в сроки, устанавливаемые ответственным за электрохозяйство. Величину допустимого сопротивления изоляции ГОСТ рекомендует принимать равной одному килоому на один вольт рабочего напряжения машины, и для машин, рассчитанных на напряжение до 1000 В, нормой считается 500 кОм. Распространенными способами сушки электрических машин являются сушка нагревом от внешнего источника тепла и нагревом током, протекающим в обмотке машины. Сушка внешним нагревом производится с разборкой машины. Разборка машины необходима не только для улучшения сушки и сокращения ее времени, но и для полного удаления влаги и ржавчины из зазора машины при сильном ее увлажнении. Простейшим способом сушки внешним нагревом является нагрев лампами накаливания, помещаемыми внутрь статора машины на лист железа или асбеста. Лучше брать две лампы, мощность которых зависит от мощности двигателя, например, при мощности двигателя 30 кВт можно взять две лампы мощностью по 300 Вт, для двигателя 75 кВт — две лампы по 500 Вт, для двигателя 110 кВт — две лампы 1000 Вт. Вместо ламп накаливания внешний нагрев может осуществляться также с помощью трубчатых электронагревателей — ТЭН соответствующих размеров и Мощности, устанавливаемых внутрь статора на теплостойкую подкладку. Нагрев машины может быть также струей горячего воздуха от воздухонагревателя, например, электрокалорифера, в сушильном шкафу или около мощного источника тепла. Приносит пользу сушка на свежем воздухе под лучами солнца летом. Сушка нагревом обмотки машины током, протекающим в ней, производится при наличии подходящего источника тока, при этом машина не разбирается. Данный метод пригоден при несильной увлажненности изоляции, когда не видно на обмотке капель влаги. При этом при сушке трехфазного двигателя его ротор затормаживается, при фазном роторе кольца ротора соединяются вместе.
К обмотке статора подводится трехфазный ток такого напряжения, чтобы в обмотке получить ток, равный примерно 0,5Iн (/н — номинальный ток двигателя). Для поддержания такого тока напряжение сушки может быть равным 0,1Uн (Uн — номинальное напряжение двигателя). Для сушки могут применяться трехфазные трансформаторы с вторичным напряжением 36 В, изготовляемые промышленностью, например, типа ТСЗ-2,5/1, с помощью которого может быть высушен двигатель мощностью от 30 кВт. Для сушки двигателей мощностью от 30 до 55 кВт нужно два таких трансформатора, соединенных параллельно. При отсутствии трехфазного трансформатора сушка двигателя может производиться с помощью сварочного трансформатора. При этом, если двигатель имеет шесть выводных концов, то обмотки его фаз соединяются последовательно. Присоединение однофазного напряжения к трем выводным концам при соединении обмоток двигателя звездой или треугольником дает неравный ток в обмотках двигателя, при этом при соединении звездой нужно соединять вместе два выводных зажима. Поэтому при трех выводных концах обмоток двигателя нужно периодически пересоединять провода к разным зажимам двигателя (рис. 2.35).
Рис. 2.35. Схема сушки асинхронного электродвигателя от трансформатора 36 В: о) двигатель имеет шесть выводов обмоток; 6) двигатель имеет три вывода и соединен звездой; в) двигатель имеет три вывода и соединен треугольником; б1)~б3), в1)-в3) — последовательность периодических пересоединений при подводе тока. Обозначение выводов обмоток электрических машин Для присоединения к сети новых электрических машин или доставленных из ремонта надо знать назначение выводных концов их обмоток. Выводные концы электрических машин маркируются путем выбивания знаков на наконечниках выводных концов обмоток, а если наконечники малы, то на металлических кольцах у наконечников, или надписями на пластмассовых кольцах у наконечников. Маркировка выводов электрических машин приведена а табл. 2.45 и 2.46. Таблица 2.45 ОБОЗНАЧЕНИЕ ВЫВОДОВ ОБМОТОК ЭЛЕКТРИЧЕСКИХ МАШИН
У многоскоростных машин много выводных концов в коробках зажимов в соответствии с количеством частот вращения, на которые они рассчитаны при соответствующем соединении выводных концов. Нужную частоту вращения можно получить, соединив выводные концы согласно рис. 2.16. Таблица 2.46 ОБОЗНАЧЕНИЕ ВЫВОДОВ ОБМОТОК ЭЛЕКТРИЧЕСКИХ МАШИН
Обозначения полупроводниковых приборов
2.6.2. Полупроводниковые диоды 2.6.3. Тиристоры 2.6.4. Транзисторы 2.6.5. Оптоэлектронные приборы 2.6.6. Отказы полупроводниковых приборов и их проверка
В 1973 г. принята новая система обозначений на вновь разрабатываемые и модернизируемые приборы.
Первый элемент обозначения определяет исходный полупроводниковый материал, из которого изготовлен прибор. Для приборов устройств широкого применения обозначение исходного материала производится буквами: Г — германий или его соединения, К — кремний или его соединения, А — соединения галлия. Для приборов, используемых в устройствах специального назначения, обозначения производятся соответственно цифрами 1, 2, 3.
Второй элемент определяет подкласс прибора: транзисторы без полевых — Т, транзисторы полевые — П, диоды выпрямительные универсальные, импульсные — Д, выпрямительные столбы и блоки — Ц, диоды сверхвысокочастотные — А, варикапы — В, тиристоры диодные — Н, тиристоры триодные — У, стабилизаторы тока — К, стабилитроны — С.
Третий элемент в обозначении диодов, транзисторов и тиристоров определяет назначение прибора и обозначается цифрой.
Диоды выпрямительные малой мощности (прямой ток не более 0, 3 А) обозначаются 1, средней мощности — прямой ток от 0, 3 до 10 А — 2, диоды универсальные с рабочей частотой не более 1000 МГц — 4.
Транзисторы малой мощности (не более 0, 3 Вт) на частоту не более 3 МГц обозначаются 1, на частоту от 3 до 30 МГц — 2, на частоту более 30 МГц — 3. Транзисторы средней мощности (от 0, 3 до 1, 5 Вт) обозначаются соответственно цифрами 4, 5, 6, транзисторы большой мощности — 7, 8, 9.
Четвертый и пятый элементы означают номер разработки прибора и обозначаются цифрами от 01 до 99.
Для стабилитронов третий элемент обозначает индекс мощности, четвертый и пятый — номинальное напряжение стабилизации.
Шестой элемент в обозначении диодов и транзисторов определяет параметрическую группу приборов, а в обозначении стабилитронов — последовательность разработки и обозначается буквами от А до Я.
Примеры обозначения:
ГТ605А — транзистор для устройств широкого применения германиевый, средней мощности, номер разработки 05, группа А;
КД215А — диод выпрямительный для устройств широкого применения кремниевый, средней мощности, номер разработки 15, группа А.
Приборы, разработанные в период с 1964 до 1973 г. имеют сходную маркировку.
Приборы, разработанные до 1964 г., имеют маркировку, состоящую из двух или трех элементов.
Первый элемент: Д — диоды, П — плоскостные транзисторы, С — точечные транзисторы.
Второй элемент — цифра, указывающая тип прибора.
Диоды точечные германиевые — от 1 до 100, точечные кремниевые — от 101 до 200, плоскостные кремниевые — от 201 до 300, плоскостные германиевые — от 301 до 400, стабилитроны — от 801 до 900, варикапы — от 901 до 950, выпрямительные столбы — от 1001 до 1100.
Транзисторы: маломощные германиевые низкочастотные — от 1 до 100, маломощные кремниевые низкочастотные — от 101 до 200, мощные германиевые низкочастотные — от 201 до 300, мощные кремниевые низкочастотные — от 301 до 400.
Третий элемент — буква, указывающая разновидность прибора: П16А, П16Б.
По более ранней системе обозначений плоскостные германиевые диоды обозначаются Д7.
Общие понятия
2.10.2. Асинхронные машины 2.10.3. Синхронные машины 2.10.4. Машины постоянного тока 2.10.5. Неисправности и отказы электрических машин
Электрическая машина является электромеханическим преобразователем, в котором преобразуется механическая энергия в электрическую или электрическая энергия в механическую.
В зависимости от рода отдаваемого или потребляемого тока электрические машины разделяются на машины переменного и постоянного тока.
Машины переменного тока делятся на синхронные, асинхронные и коллекторные.
В синхронной машине поле возбуждения создается обмоткой, расположенной на роторе и питающейся постоянным током. Обмотка статора соединяется с сетью переменного тока. Обращенная схема, когда обмотка возбуждения расположена
на статоре, встречается редко. В синхронной машине обмотка, в которой индуцируется ЭДС и протекает ток нагрузки, называется обмоткой якоря, а часть машины с этой обмоткой называется якорем. Часть машины, на которой расположена обмотка возбуждения, называется индуктором.
Синхронные машины применяются в качестве генераторов и двигателей.
В асинхронной машине поле создается в обмотке статора и взаимодействует с током, наводимым в обмотке ротора.
Среди асинхронных машин коллекторными являются однофазные двигатели малой мощности.
Асинхронные машины применяются в основном в качестве двигателей.
Машина постоянного тока по своему конструктивному выполнению сходна с обращенной синхронной машиной, у которой обмотка якоря расположена на роторе, а обмотка возбуждения — на статоре. Большинство машин постоянного тока коллекторные. Они могут работать в качестве генераторов или двигателей.
По мощности электрические машины можно разделить на следующие группы.
Машины большой мощности:
коллекторные машины мощностью более 200 кВт;
синхронные генераторы мощностью более 100 кВт;
синхронные двигатели мощностью более 200 кВт;
асинхронные двигатели мощностью более 100 кВт при напряжении более 1000 В.
Машины средней мощности:
коллекторные машины мощностью 1...200 кВт;
синхронные генераторы мощностью до 100 кВт, в том числе высокоскоростные мощностью до 200 кВт;
асинхронные двигатели мощностью 1...200 кВт;
асинхронные машины мощностью 1...400 кВт при напряжении до 1000 В, в том числе двигатели единых серий от 0,25 кВт.
К группе машин малой мощности относятся следующие электрические машины, не входящие в первые две группы:
двигатели постоянного тока коллекторные и универсальные;
асинхронные двигатели, синхронные двигатели и др.
Общие сведения
2.7.2. Группы соединений обмоток трансформаторов 2.7.3. Параллельная работа трансформаторов 2.7.4. Приемка и транспортировка трансформаторов
В справочнике рассматривается электрооборудование напряжением до 1000 В, а трансформаторы для электроснабжения этого электрооборудования имеют на входе напряжение более 1000 В — в основном 6, 10 кВ. Но иметь представление о трансформаторах и их отказах начинающему электрику нужно, исходя из их важности в электроснабжении и влиянии на качество напряжения в сети, чтобы не искать причины плохого качества напряжения в самой сети при неисправностях трансформатора.
Большинство потребителей получает электроэнергию от трансформаторов, преобразующих электроэнергию высокого напряжения в энергию напряжения, применяемого потребителем — 380/220 В. В основном применяются трансформаторы трехфазные двухобмоточные с масляным охлаждением, в особых условиях могут применяться трансформаторы сухие и с кварцевым заполнением.
Условное обозначение типа трансформатора состоит из букв, означающих число фаз, вид охлаждения и цифр, показывающих мощность и напряжения высшее и низшее.
Число фаз трансформатора обозначается: О — однофазный, Т — трехфазный.
Обозначения вида охлаждения трансформаторов показаны в табл. 2.19.
Основные данные некоторых трансформаторов показаны в табл. 2. 20, где ТМ — трехфазный с масляным охлаждением, цифра через черточку означает номинальную мощность трансформатора в кВ*A, ВН — высшее напряжение, НН — низшее напряжение, XX — холостой ход, КЗ — короткое замыкание.
Напряжение короткого замыкания Uk — напряжение, которое надо приложить к его первичной обмотке при замкнутой накоротко вторичной, чтобы по обмоткам трансформатора протекал номинальный ток.
Таблица 2.19 УСЛОВНЫЕ ОБОЗНАЧЕНИЯ ВИДА ОХЛАЖДЕНИЯ ТРАНСФОРМАТОРОВ
Оптоэлектронные приборы
2.6.5. Оптоэлектронные приборы
Оптоэлектронный полупроводниковый прибор — полупроводниковый прибор, действие которого основано на использовании явлений излучения, передачи или поглощения в видимой, инфракрасной или ультрафиолетовой областях спектра.
Светоизлучающий диод — полупроводниковый прибор с одним переходом, в котором происходит преобразование электрической энергии в энергию светового излучения. Прибор предназначен для использования в устройствах визуального представления информации. Основные параметры светоизлучающих диодов приведены в табл. 2.17, где I. — сила света, мкд (милликандела), В — яркость, кд/м^2 (кандела на метр^2). Остальные параметры — как в обычных диодах.
Таблица 2.17 ОПТОЭЛЕКТРОННЫЕ ПРИБОРЫ
Полупроводниковый знаковый индикатор — полупроводниковый прибор, который состоит из нескольких светоизлучающих диодов и предназначен для использования в устройствах визуального представления информации. Некоторые параметры индикаторов представлены в той же табл. 2.17.
Оптопара — оптоэлектронный полупроводниковый прибор, который состоит из излучающего и фотоприемного элементов, между которыми имеется оптическая связь, обеспечивающая электрическую изоляцию между входом и выходом.
Основные параметры оптопар и оптоэлектронных ключей представлены в табл. 2.18, где Iвх,опт — входной ток оптопары, Uвх-вых — напряжение между входом и выходом, Uвx, обр — обратное входное напряжение, Рпотр -- потребляемая мощность, Uвх — входное напряжение, Uпит — напряжение питания, Uвых — выходное остаточное напряжение, Rи — сопротивление изоляции между входом и выходом оптопары.
Таблица 2.18 ОПТОПАРЫ И ОПТОЭЛЕКТРОННЫЕ КЛЮЧИ
Осветительные установки
Общие сведения
Осветительной установкой называется электроустановка, состоящая из источника света вместе с арматурой и пуско-регулирующей аппаратурой.
Источник света устанавливается в арматуре, имеющей детали его крепления и защиты от внешней среды, защиты глаз человека от прямых лучей света. Совокупность этих деталей составляет светильник. Он имеет также петли крепления его в нужном месте.
Источниками света являются лампы накаливания и люминесцентные лампы различной конструкции.
Параметрами источников света являются номинальное напряжение, номинальная мощность, световой поток.
Электрические лампы накаливания
Принцип действия лампы накаливания основан на свечении спирали в стеклянной колбе, заполненной инертным газом.
Лампы накаливания изготовляются на напряжение от единиц до сотен вольт и на мощности от долей ватта до киловатт.
Параметры некоторых ламп накаливания приведены в табл. 2.47.
Таблица 2.47 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ НЕКОТОРЫХ ИСТОЧНИКОВ СВЕТА
Так как температура спирали зависит от напряжения сети, к которой присоединяется лампа, то срок службы лампы в
основном определяется величиной напряжения сети. В сетях, где возможны колебания напряжения, лампы быстро выходят из строя. Более надежными являются лампы на повышенное напряжение до 240 В.
Таблица 2.48 НЕКОТОРЫЕ ПУСКО-РЕГУЛИРУЮЩИЕ АППАРАТЫ ДЛЯ ГАЗОРАЗРЯДНЫХ ЛАМП
На практике может быть превышено и это напряжение, например, при замыкании на корпус оборудования другой фазы, к которой лампа не присоединена. Так как лампа присоединяется к фазному и нулевому проводу, связанному с корпусом оборудования, то она оказывается включенной кратковременно на две фазы, что приводит ее к перегоранию.
Так же отрицательно действуют плохие зажимы и контакты в цепи лампы, которые приводят к колебаниям тока в лампе. Отрицательно действуют на лампы всякие перенапряжения в сети, частые включения и отключения самих ламп.
Неисправности осветительных установок с лампами накаливания приведены в табл. 2.49.
Принцип действия ЛЛНД основан на дуговом разряде в
парах ртути низкого давления.
Получающееся при этом ультрафиолетовое излучение преобразуется в видимое в слое люминофора, покрывающего внутренние стенки лампы. Лампы представляют собой длинные стеклянные трубки, в торцы которых впаяны ножки, несущие по два электрода, между которыми находится катод в виде спирали. Таблица 2.49 НЕИСПРАВНОСТИ ОСВЕТИТЕЛЬНЫХ УСТАНОВОК
Окончание табл. 2.49
В трубку лампы введены пары ртути и инертный газ, главным образом аргон. Назначением инертных газов является обеспечение надежного загорания лампы и уменьшение распыления катодов. На внутреннюю поверхность трубки нанесен слой люминофора. Применяются ЛЛНД с различной цветностью, которую можно получить с помощью люминофора — галофосфата кальция в зависимости от цветовой температуры лампы. Цветовой температурой называется температура абсолютно черного тела, при которой цвет его излучения совпадает с цветом излучения самого тела. ЛД — лампы дневного цвета, имеющие цветовую температуру 6500 К, соответствующую цветовой температуре голубого неба без солнца (К — Кельвин. Т= t+ 273, где Т— температура в К, t — температура в °С). ЛХБ — лампы холодно-белого цвета с цветовой температурой 4800 К, соответствующей цветовой температуре дневного неба, покрытого тонким слоем белых облаков. ЛБ — лампы белого цвета с цветовой температурой 4200 К, соответствующей цветовой температуре яркого солнечного дня. ЛТБ — лампы тепло-белого цвета с цветовой температурой 2800 К, соответствующей цветности излучения ламп накаливания. В обозначениях ламп с улучшенной цветностью в конце добавляется буква Ц, например, лампы ЛДЦ. Пускорегулирующие аппараты со стартерным зажиганием для ламп ЛЛНД Стартерный пускорегулирующий аппарат (ПРА) состоит из дросселя и стартера, иногда могут применяться компенсирующие конденсаторы. Дроссель служит для стабилизации р .жима работы лампы. При зажигании лампы стартер не размыкает свои контакты в течение времени, необходимого для разогрева электродов лампы до температуры термоэлектронной эмиссии, быстро размыкает контакты после разогрева электродов, поддерживает контакты разомкнутыми во время горения лампы. На рис. 2.36, б представлена схема устройства стартера тлеющего разряда.
Он представляет собой баллон из стекла, наполненный инертным газом, в котором находятся металлический и биметаллический электроды, выводы которых соединены с выступами в цоколе для контакта со схемой лампы При включении лампы согласно схемы рис. 2.36 а на электро-
Рис 2.36. Стартерное зажигание люминесцентной лампы: а) схема включения: EL — лампа, VL — стартер, LL — дроссель; 6} схема стартера 1 — контакты, 2 — металлический электрод, 3 — баллон, 4 — биметаллический электрод, 5 — цоколь; в) диаграмма изменения напряжения на лампе и тока в лампе при зажигании: Uс — напряжение сети,Uимп — импульс напряжения, зажигающий лампу, Uтл — напряжение тлеющего разряда, Iтл — ток тлеющего разряда, Iпуск — пусковой ток, Iр — рабочий ток; tтл — период тлеющего разряда, t1 — момент замыкания контактов стартера, tзам — период замыкания контактов стартера, t2 — момент появления импульса напряжения на электродах лампы, tпуск— общая длительность пускового режима лампы. ды лампы и стартера подается напряжение сети Uс, которое достаточно для образования тлеющего разряда между электродами стартера. Поэтому в цепи протекает ток тлеющего разряда стартера Iтл = 0,01...0,04 А. Тепло, выделяемое при протекании тока через стартер, нагревает биметаллический электрод, который выгибается в сторону другого электрода. Через промежуток времени тлеющего разряда tтл = 0,2...0,4 с контакты стартера замыкаются — момент t1 на рис. 2.36, в, и по цепи начинает течь пусковой ток Iпуск. величина которого определяется напряжением сети и сопротивлениями дросселя и электродов лампы. Этого тока не достаточно для нагревания электродов стартера, и биметаллический электрод стартера разгибается, разрывая цепь пускового тока. Предварительно пусковой ток разогревает электроды лампы. Благодаря наличию в цепи индуктивности, при размыкании контактов стартера в цепи возникает импульс напряжения в момент времени t2 -зажигающий лампу. Время разогрева электродов лампы составляет 0,2...0,8 с что в большинстве случаев недостаточно, и лампа может не загореться с первого раза, и весь процесс может повториться.
Общая длительность пускового режима лампы Iпуск составляет 5...15 с. Длительность пускового импульса при размыкании контактов стартера составляет 1...2 мкс, что недостаточно для надежного зажигания лампы, поэтому параллельно контактам стартера включают конденсатор емкостью 5...10 пф. Параметры некоторых ЛЛНД приведены в табл. 2.47, а ПРА — в табл. 2.48. Отказы установок с ЛЛНД перечислены в табл. 2.49. Обозначения типов ПРА расшифровываются следующим образом (табл. 2.50): Таблица 2.50 РАСШИФРОВКА ОБОЗНАЧЕНИЙ ТИПОВ ПРА
Дуговые ртутные лампы высокого давления (ДРЛ) При повышении давления в лампе и плотности тока разряд в ней становится более интенсивным по излучению. Наряду с излучением в видимой области спектра получается излучение в ультрафиолетовой области. При использовании такого разряда в источниках света требуется исправление его цветности путем преобразования ультрафиолетового излучения в красное. Для получения такого излучения используются трубчатые кварцевые лампы, называемые в данном случае горелками. Горелка представляет собой кварцевую трубку с впаянными по концам катодами на больший ток, чем при разряде низкого давления. С целью облегчения зажигания впаиваются дополнительные электроды зажигания в один или оба конца трубки, соединенные с противоположным катодом через добавочное сопротивление R — рис. 2.37. Из-за малого расстояния между основным и дополнительным электродами между ними происходит разряд при включении лампы, приводящий к ионизации газа в трубке. Когда сопротивление столба разряда в трубке станет меньше добавочного сопротивления в цепи дополнительного электрода, начинается разряд между основными электродами. Такие горелки применяются в лампах ДРЛ. Так как работа горелки зависит от действия внешней среды, то она размещается внутри колбы лампы, покрытой изнутри люминофором, который поглощает ультрафиолетовое излучение и превращает его в видимое красное. Внешняя колба лампы наполняется инертным газом. Время, в течение которого происходит установление нормального режима работы лампы, называемое временем разгорания, составляет 7...10 мин.Повторное зажигание лампы возможно только после ее остывания.
Рис. 2.37. Схема конструкции горелки лампы ДРЛ: 1 — основной электрод, 2 — электрод зажигания, 3 — вводы, R — добавочное сопротивление. Рассмотренные лампы требуют для своей работы ПРА. Лампа с горелкой и нитью накала в колбе не требует специальных устройств для включения и может прямо включаться в сеть. Такие лампы называются ртутно-вольфрамовыми. Параметры ламп ДРЛ приведены в табл. 2.47, а ПРА для них — в табл. 2.48. Неисправности установок с люминесцентными лампами перечислены в табл. 2.49.
Отказы полупроводниковых приборов и их проверка
2.6.6. Отказы полупроводниковых приборов и их проверка
Отказы полупроводниковых приборов часто связаны с пробоем, когда прибор проводит ток в обратном направлении. В основе этого явления лежит пробой р-n перехода в монокристаллической структуре, составляющей основу прибора. Существует несколько разновидностей пробоя р-n перехода.
Тепловой пробой происходит в результате тепловой ионизации атомов полупроводника и местного перегрева структуры.
Лавинный пробой происходит в результате ударной ионизации атомов полупроводника неосновными носителями в области объемного заряда.
Зенеровский пробой происходит в результате перехода валентных электронов из валентной зоны в зону проводимости. При этом происходит разрушение кристаллической решетки в области объемного заряда электрическим полем.
Поверхностный пробой происходит в местах выхода р-n перехода на поверхность полупроводника. Он обусловлен увеличением напряженности поля объемного заряда в связи с искажением поля поверхностными зарядами, ухудшением свойств среды у поверхности полупроводника.
Практически действуют несколько видов пробоя одновременно.
Нарушение вентильных свойств приборов может также происходить при различных перенапряжениях, при перегрузках по току и вызванных ими тепловых перегрузках.
Для увеличения пропускаемого тока безопасного перегрева применяется охлаждение приборов. Охлаждение предусматривается для силовых диодов и тиристоров в энергетике и для мощных диодов, транзисторов и тиристоров в электронике. Охлаждение может быть воздушное, водяное и испарительное.
Воздушное охлаждение осуществляется путем присоединения к прибору теплостока, или радиатора. Радиаторы могут быть медными или алюминиевыми. Применяется в основном резьбовое соединение радиатора с прибором.
Большое значение имеет проблема контакта прибора с радиатором. При этом должно быть плотное затягивание резьбы, но без повреждения резьбы и поверхностей.
В случае применения алюминия для радиаторов проблема контакта заключается в том, что имеется большая электрохимическая разность потенциалов медь—алюминий — около 1, 8 В.
Попадание влаги в место контакта вызывает коррозию алюминия, поэтому применяется гальваническое покрытие основания вентиля. Водяное охлаждение осуществляется присоединением приборов к контуру с водой, например, через полую шину. Испарительное охлаждение осуществляется присоединением прибора к контуру, где жидкость испаряется и потом конденсируется. Ясно, что без охлаждения, если оно предусмотрено конструкцией, полупроводниковый прибор не может обеспечить необходимый режим работы и выйдет из строя. Кроме указанных причин, отказы полупроводниковых приборов могут быть обусловлены обрывами и перегоранием выводов, наружным пробоем между выводами, растрескиванием кристаллов и другими причинами. Иногда выход из строя прибора можно определить по внешнему виду, если он обгорел, разрушился, обгорели провода. Но не всегда признаки выражены явно, поэтому нужно пользоваться приборами. Рассмотрим проверку некоторых полупроводниковых приборов и других элементов аппаратуры с помощью измерительных приборов. Диоды С помощью омметра можно измерить прямое и обратное сопротивления постоянному току. Чем меньше прямое сопротивление и больше обратное сопротивление, тем лучше диод. Прямое сопротивление должно быть не больше примерно 200 Ом, а обратное не меньше 500 кОм. Следует иметь в виду, что если прямое сопротивление около 0, а обратное — около оо, то в первом случае имеется пробой, а во втором — обрыв выводов или нарушение структуры. Сопротивление диода переменному току меньше прямого сопротивления и зависит от положения рабочей точки. Транзисторы Как известно, транзистор состоит из двух переходов, каждый из которых обладает свойствами диода, поэтому проверить транзистор можно как диод. С помощью омметра можно проверить сопротивление между эмиттером и базой и коллектором и базой в прямом и обратном направлении. Если транзистор исправен, то прямые сопротивления составляют величину порядка 30... 50 Ом, а обратные — 0, 5... 2 МОм. Но недостаточно измерить только величины сопротивлений переходов, чтобы сделать вывод о работоспособности транзистора.
Желательно измерить обратный ток коллектора, обратный ток эмиттера и ориентировочное значение коэффициента усиления по току. Есть специальные приборы для измерения этих параметров транзисторов, например, прибор ТЛ-4М. Пригодность транзистора определяется сравнением полученных при измерении данных с данными, указанными в паспорте транзистора. При измерениях параметров отдельного транзистора можно выявить обрывы электродов и замыкания в транзисторах, но это же можно сделать и при измерениях в схемах с транзисторами. При этом нужно иметь в виду, что применяемый измерительный прибор должен обладать достаточно большим внутренним сопротивлением. При измерениях можно сделать следующие выводы. При обрыве цепи базы напряжения базы и эмиттера отсутствуют, напряжение коллектора повышено. При обрыве цепи эмиттера напряжение коллектора повышено, напряжение базы почти нормальное, напряжение на эмиттере приблизительно равно напряжению базы. При обрыве цепи коллектора напряжения на всех электродах транзистора уменьшаются. При обрыве базы внутри транзистора напряжение базы близко к нормальному, напряжение эмиттера уменьшается, а напряжение коллектора повышается. При замыкании эмиттера и коллектора внутри транзистора напряжение базы изменяется незначительно, напряжение эмиттера возрастает, напряжение коллектора падает. Нужно учитывать, что транзистор может работать в режиме насыщения. Этот режим бывает тогда, когда сопротивление нагрузки в цепи коллектора велико и ток коллектора создает на нем падение напряжения, равное напряжению источника питания. В этом режиме потенциалы всех электродов транзистора одинаковы. Данный режим используется в импульсных устройствах, а для усилителей опасен. Параметры и характеристики транзисторов зависят от температуры окружающей среды, стабильности нагрузки, условий теплоотвода. Все эти факторы изменяют температуру транзистора. При повышении температуры возможен выход транзистора из строя и неизбежное изменение параметров схемы. Большую температурную чувствительность транзистора можно объяснить следующим. Электропроводность германия и кремния, из которых изготовляют транзисторы, зависит от температуры.
При увеличении температуры нарушается электрическое равновесие, увеличивается эмиттерный и коллекторный ток, что увеличивает мощность, рассеиваемую на коллекторе, и температуру коллектора, вызывая увеличение обратного тока коллектора. При этом может быть равновесие или транзистор выйдет из строя. Это зависит от условий охлаждения, от окружающей температуры и величины сопротивления в цепи коллектора, ограничивающего нарастание коллекторного тока. Следует помнить, что при большом сопротивлении в цепи коллектора транзистор входит в режим насыщения и перестает быть усилителем. Второй момент, увеличивающий чувствительность транзистора к температуре, состоит в том, что прямая проводимость участка эмиттер—база увеличивается с ростом температуры. Это явление вызывает увеличение тока эмиттера. Иногда имеет место самопроизвольное изменение параметров транзисторов независимо от изменений окружающей среды. Неисправность транзистора в схеме — явление редкое и может быть вызвано его перегревом при плохом теплоотводе или при пайке, или нарушением режимов работы схемы. Перед заменой транзистора нужно детально его проверить, а при выходе из строя транзистора проверить другие детали, входящие в схему, от которых зависит его работа, так как выход их из строя может быть причиной выхода из строя транзистора. Для замены нужно брать транзистор такого же типа или равноценный. Перед установкой его нужно проверить описанными методами. Расположение выводов нужно определять по прилагаемому паспорту или по справочнику. Для пайки транзисторов желательно иметь низковольтный паяльник на 6 или 12 В, присоединяемый через понижающий трансформатор, мощностью около 40 Вт. Можно пользоваться и обычным паяльником, но нужно сначала его нагреть, а потом отключить и паять. Выводы транзистора, если позволяет его конструкция, нужно оставлять не короче 15 мм, изгибать их не ближе 10 мм от корпуса, изгиб должен быть плавным. Температура нагрева контактного слоя транзистора не должна превышать 75 С, поэтому для отвода тепла при пайке выводы у корпуса нужно держать плоскогубцами или пинцетом.
Паяльник должен быть возможно дальше от транзистора, пайку нужно заканчивать быстрей. Жало паяльника должно быть зачищено и покрыто припоем, который должен быть легкоплавким. Желательно применение пистолетных паяльников, которые включаются только во время пайки. Интегральные микросхемы (ИМС) Отказы ИМС могут быть связаны с физико-химическими процессами внутри полупроводника, с теми же процессами на поверхности полупроводника и обусловлены состоянием контактных соединений. Первая группа отказов обусловлена структурными дефектами — дислокациями, микротрещинами — внутри полупроводника. Эти дефекты могут с течением времени развиваться под воздействием температурных и механических влияний и изменять характеристики микросхемы, приводя к отказам. Вторая группа отказов связана с накоплением на поверхности полупроводника двуокиси кремния, а в объеме, близком к поверхности, зарядов, изменяющих состояние р-n переходов, и появление поверхностных каналов. В результате этого происходит увеличение токов утечки, отсутствие насыщения вольт-амперной характеристики перехода коллектор—база, омическое шунтирование эмиттера с коллектором, снижение обратного пробивного напряжения на коллекторе, уменьшение коэффициента усиления по току, омическое шунтирование эмиттера с базой, увеличение шумов. В ИМС применяется металлизированная разводка между отдельными элементами с соединением алюминиевых контактных площадок с внешними выводами с помощью золотых проводников, привариваемых к контактным площадкам и наружным выводам. Отказы связаны с нарушением соединений этих проводников и металлической разводки из-за механических повреждений или малой толщины пленки алюминия. Нарушения соединений могут вызвать перегрев в этих местах, что ведет к коррозии или расплавлению металла. Нарушение электрической цепи и появление отказов может произойти по причине образования диэлектрической пленки на границе раздела алюминия и кремния или образования гидрата окиси алюминия на металлизированной разводки, при попадании влаги внутрь корпуса ИМС. Отказы могут быть также из-за нарушения контакта золотых проводников с контактными площадками микросхемы и внешними выводами корпуса. Внешним проявлением ухудшений состояния ИМС является увеличение обратного тока коллекторного перехода за счет появления тока утечки. Надежность ИМС можно повысить за счет улучшения технологии их производства. Вышедшие из строя микросхемы, как правило, подлежат замене.Заменять ИМС нужно на такую же, но можно и на микросхему сходного типа, электрическая схема которой подходит для данного устройства. Если микросхемы впаяны в печатные платы, то при их замене нужно соблюдать следующие правила. Паяльник должен быть небольшого размера, мощностью не более 40 Вт, с температурой нагрева жала не более 200 С, с насадкой. Насадка имеет два широких жала, которые прижимаются к рядам припаиваемых выводов микросхемы. Она навинчивается на резьбу на жале паяльника. Припой должен быть с низкой температурой плавления, количество его при пайке должно быть минимальным. Пайка должна производится несколько секунд при отключенном питании паяльника. Нельзя производить необоснованный замен деталей в схеме, содержащей ИМС, так как это может вывести ее из строя.
Параллельная работа трансформаторов
Не всегда один трансформатор может справиться с нагрузкой от потребителей, поэтому обычно они работают параллельными группами. Но не каждый трансформатор может
работать в параллельной группе с другими трансформаторами. Для параллельной работы трансформаторов необходимо чтобы они удовлетворяли следующим условиям.
Равенство коэффициентов трансформации К=ВН/НН. где ВН — высшее напряжение, НН — низшее напряжение. При несоблюдении этого условия между вторичными обмотками трансформаторов будет циркулировать уравнительный ток. приводящий к перегреву трансформатора.
Равенство напряжений короткого замыкания Uк %. В противном случае трансформаторы не будут загружаться пропорционально своим мощностям. При этом отношение мощностей параллельно работающих трансформаторов должно быть не больше 1 : 3, иначе для малых трансформаторов перегрузки могут оказаться недопустимыми.
Одинаковые группы соединений. При различных группах соединений параллельно работающих трансформаторов между векторами их вторичных напряжений будет сдвиг фаз, вызывающий уравнительные токи между обмотками трансформаторов. При разных группах соединений, при самом малом сдвиге фаз, равном 30°, уравнительный ток превышает номинальный ток трансформатора в 5 раз, при самом большом сдвиге 180° — в 20 раз.
Полупроводниковые диоды
Полупроводниковым диодом называется прибор, основой конструкции которого является один р-n переход. Условное обозначение диода (прил. 1) сохранилось от первых электровакуумных диодов. В изображении черта означает катод, а треугольник анод. Чтобы это запомнить, достаточно представить, что катод испускает электроны, и они выходят из него расходящимся пучком, образуя треугольник. Если считать проводимость диода направленной от плюса к минусу, то она будет соответствовать стрелке, образованной вершиной треугольника.
Параметры некоторых выпрямительных диодов показаны в табл. 2.11,
Таблица 2.11 ПАРАМЕТРЫ ПОЛУПРОВОДНИКОВЫХ ДИОДОВ
где Iпр ср — прямой средний ток: среднее за период значение тока через диод;
Uобр,и,п — обратное импульсное повторяющееся напряжение: наибольшее мгновенное значение обратного напряжения;
Uобр. макс — максимальное допустимое постоянное обратное напряжение;
Iобр, и — импульсный обратный ток: наибольшее мгновенное значение обратного тока, обусловленное импульсным обратным напряжением;
Iобр — постоянный обратный ток, обусловленный постоянным обратным напряжением;
Iобр, ср — средний обратный ток: среднее за период значение обратного тока.
Примеры маркировки диодов цветными метками приведены в табл. 2.12.
Таблица 2.12 МАРКИРОВКА ДИОДОВ ЦВЕТНЫМИ МЕТКАМИ
Универсальные и импульсные диоды — полупроводниковые диоды, имеющие малую длительность переходных процессов включения и выключения и предназначенные для применения в импульсных режимах работы.
Стабилитрон — полупроводниковый диод, предназначенный для стабилизации напряжения. Обратная ветвь вольт-амперной характеристики этого диода является почти прямой линией (рис. 2.2), поэтому при изменении тока, проходящего через прибор, напряжение на нем практически не меняется.
Рис. 2.2. Схемы применения полупроводниковых диодов:
а) выпрямление переменного тока с помощью выпрямительного диода. Rнагр — сопротивление нагрузки; 6) стабилизация напряжения с помощью стабилитрона. Uвх — входное напряжение, Uвых — выходное напряжение;
в), г) вольт-амперные характеристики.
iпр, Unp, iобр.Uобр ~ прямые и обратные токи и напряжения, Uст — стабилизированное напряжение. Параметры некоторых стабилитронов приведены в табл. 2.13, где Uст — напряжение стабилизации, Iст — ток стабилизации: значение постоянного тока, протекающего через стабилитрон в режиме стабилизации, Pст.макс — максимально допустимая мощность стабилизации. Варикап — полупроводниковый диод, действие которого основано на использовании зависимости его емкости от величины обратного напряжения. Он применяется как элемент с электрически управляемой емкостью: Основные параметры некоторых варикалов приведены в табл. 2.14, где Св — емкость варикапа, Qв — добротность варикапа: отношение реактивного сопротивления варикапа на заданной частоте к сопротивлению потерь при заданной емкости или обратном напряжении. Таблица 2.13 СТАБИЛИТРОНЫ ОБЩЕГО НАЗНАЧЕНИЯ
Таблица 2.14 ВАРИКАПЫ
Приемка и транспортировка трансформаторов
Трансформатор принимается после изготовления службами контроля на заводе, а также при покупке его для замены вышедшего из строя трансформатора или для электроснабжения нового объекта. Но после этого надежность трансформатора может измениться в худшую сторону, так как он может перемещаться к месту хранения на заводе или на базе снабжения, и это перемещение и условия хранения могут ухудшить его состояние.
В новом трансформаторе прежде всего нужно обращать внимание на уровень масла. Оно-должно быть видно хотя бы в маслоуказателе, иначе есть сомнение в его наличии в трансформаторе, что, в свою очередь, говорит о течи в корпусе трансформатора. Нужно проверять отсутствие течи и при наличии масла в маслоуказателе.
Необходимо убедиться в отсутствие механических повреждений корпуса трансформатора, изоляторов и шпилек, в отсутствие трещин на изоляторах, в целостях резьбы на шпильках и т. д.
К трансформатору должна быть приложена вся необходимая документация, запасные части, что должно быть проверено по ведомости комплектации.
Погрузка и перевозка трансформатора должна производиться с предосторожностями, чтобы его не повредить. Для предотвращения ударов и перемещений при перевозке трансформатор привязывается.
Таблица 2. 21 НЕИСПРАВНОСТИ ТРАНСФОРМАТОРОВ
* Обслуживание и ремонт трансформаторов производят электрики специализированных служб При ликвидации аварии им могут помогать электрики других служб при отсутствии напряжения в месте работы на токоведущих частях и вблизи них
Окончание табл. 2. 21
Провода и кабели
Влияния внешней среды
Надежная работа проводов и кабелей зависит от их правильного выбора по условиям внешней среды и току нагрузки. Провода и кабели в электроустановках предназначены для определенных способов прокладки, которые следует учитывать. Как правило, изолированные провода не прокладываются незащищенными и должны прокладываться в трубах, лотках и коробах, под штукатуркой. Кабели в местах, где возможно их механическое повреждение, прокладываются в трубах. Это относится и к бронированным кабелям, потому что броня и герметичные оболочки могут повредиться при различных ударах, например, при задевании перемещаемым грузом. Следует также учитывать, что провода и кабели могут повредиться и в трубах от действия воды и агрессивных жидкостей, действующих на изоляцию. Вода, попавшая в трубы с проводами и кабелями с резиновой изоляцией, ухудшает состояние изоляции, что может привести к замыканию между проводами, жилами кабелей или их замыканию на металл трубы. Обычно выходят из строя провода с резиновой изоляцией в хлопчатобумажной оплетке.
При замерзании воды в трубах лед может разорвать провода и кабели. Для предотвращения попадания воды в трубы с проводами или кабелями все отверстия в трубах нужно заделывать водонепроницаемой мастикой.
Кроме воды, на резиновую изоляцию влияют нефтепродукты, например, печное топливо, смазочные масла, что приводит к разбуханию резиновой изоляции и утрате ею всех необходимых свойств. Поэтому при возможности действия этих продуктов лучше применять кабели или провода с пластмассовой изоляцией.
Отрицательная температура приводит к отвердеванию изоляции, особенно пластмассовой, что приводит к ее растрескиванию и отколу при изгибе проводов. Это нужно учитывать при монтаже проводов и кабелей и при выборе кабелей для передвижных механизмов.
Перегрузка током проводов и кабелей приводит прежде всего к обгоранию изоляции у мест присоединения проводов к аппаратам или к электроприемникам. Возможно не только обгорание изоляции проводов, но и деталей корпусов, к которым крепятся токоведущие части, что приводит к выходу из строя аппаратов и панелей коробок зажимов электроприемников.
Устранить это явление можно только заменой проводов или кабелей. При перегрузке током могут загореться и сами провода и кабели. Выбор проводов и кабелей При выборе проводов и кабелей надо учитывать условия внешней среды в месте их прокладки, напряжение, при котором они будут работать, и ток нагрузки. При выборе проводов и кабелей по длительно допустимому току его величину можно приблизительно определить по величине тока на 1 кВт мощности электродвигателя. Как известно, номинальная мощность двигателя, кВт,
Эти приблизительные значения тока нагрузки можно принять, так как нельзя подобрать кабель или провод, имеющий точно такой длительно допускаемый ток, какой получается при точном расчете, и сечение проводов и кабелей выбирается с запасом. Провода и кабели выбираются по известному току нагрузки по таблицам длительно допустимого тока нагрузки. При этом учитывается также допустимый способ прокладки проводов и кабелей. Длительно допустимые токи нагрузки для некоторых распространенных в применении проводов и кабелей приведены в табл. 2.53 и 2.54, способы прокладки проводов и кабелей — в табл. 2.55. Таблица 2.53 ДОПУСТИМЫЕ ДЛИТЕЛЬНЫЕ ТОКИ*
* Для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с алюминиевыми (А) и медными (М) жилами. Принятое сечение жил проводов и кабелей должно быть не менее значений, приведенных в табл. 2.56. Отказы проводов и кабелей Надежность проводов и кабелей обусловлена их надежностью после изготовления, монтажа и условиями окружающей среды при эксплуатации. Во время монтажа кабели могут быть повреждены при неосторожном обращении. При изготов лении кабели и провода наматываются на барабаны или укладываются в бухты. При отматывании кабели с жесткой изоляцией собираются в кольца, и если их растянуть, не расправляя, то будет перегиб кабеля или излом. Кабель а этом месте будет ненадежным, поэтому его применять нельзя. Могут быть и другие повреждения изоляции и токоведущих жил при монтаже, некоторые уменьшают надежность при эксплуатации. Таблица 2.54 ДОПУСТИМЫЕ ДЛИТЕЛЬНЫЕ ТОКИ*
* Для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных (А), и для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке бронированных и небронированных (М). Через поврежденную изоляцию к токоведущим жилам может проникать влага, содержащая агрессивные примеси, или воздух с агрессивными газами, приводящие к коррозии металла провода. В таких условиях особенно сильно происходит коррозия алюминия, что может привести к полному обрыву жилы. В таких случаях лучше всего заменить провод или кабель, а если он большой длины, то приходится вставлять новый участок провода или кабеля. Если провод или кабель Таблица 2. 55 СПОСОБЫ ПРОКЛАДКИ ПРОВОДОВ И КАБЕЛЕЙ
Окончание табл. 2. 55
недоступен для замены, то он отсоединяется, а новый прокладывается в доступном месте. Для соединения кабелей с приемниками электроэнергии, аппаратами и с другими кабелями производится разделка их концов. При этом производится отделение жил кабелей от общей изоляции и изолирование их отдельно с помощью изолирующих полихлорвиниловых лент, клеев и других составов или заливка мест разделки кабелей с помощью специальных муфт и воронок разогретой массой или холодной затвердевающей массой. При этом разделку кабелей с пластмассовой изоляцией нельзя производить заливкой разогретой массой, так как при высокой температуре может повредиться изоляция. Как показывает практика, места разделки кабелей являются слабыми по надежности, так как в этих местах происходит замыкание с перегоранием жил. Происходит это тогда, когда применен не соответствующий материал или разделка произведена небрежно. Места разделки кабелей должны быть под наблюдением и защищены от различных вредных воздействий. Следует учитывать возможность повреждения проводов и кабелей грызунами, которые повреждают любую изоляцию.Например, крысы сгрызают изоляцию до металла провода. Насекомые также не все безобидны. Осы хотя и не повреждают изоляцию, но вьют гнезда в ящиках и шкафах, при открывании которых электриком они могут помешать ему в ответственный момент. Таблица 2.56 НАИМЕНЬШИЕ СЕЧЕНИЯ ТОКОПРОВОДЯЩИХ ЖИЛ ПРОВОДОВ И КАБЕЛЕЙ В ЭЛЕКТРОУСТАНОВКАХ
Мухи, забираясь между контактами и в зазоры, могут нарушать работу аппаратов. При возможности повреждения изоляции грызунами провода и кабели должны прокладываться в трубах, коробах и каналах с заделкой мест их ввода различными мастиками и растворами, например, цементным. При наличии насекомых места ввода проводов и кабелей в корпуса аппаратов и шкафы нужно уплотнять заводскими уплотнениями или замазывать различными составами,
Резисторы
2.2. Конденсаторы 2.3. Катушки электрических аппаратов 2.4. Трансформаторы, применяемые в устройствах автоматики и электроники 2.5. Электронные лампы 2.6. Полупроводниковые приборы 2.7. Трансформаторы для электроснабжения 2.8. Выпрямители 2.9. Электрические аппараты 2.10. Электрические машины 2.11. Осветительные установки 2.12. Датчики систем автоматического регулирования 2.13. Провода и кабели
Примеры маркировки резисторов показаны на рис. 2. 1. Для иностранных резисторов цвет пояска означает цифру: черный — 0, коричневый — 1, красный — 2, оранжевый — 3, желтый — 4, зеленый — 5, синий — 6, фиолетовый — 7, серый — 8, белый — 9. Число, соответствующее величине сопротивления резистора в Омах, составляется из цифр, соответствующих цвету поясков, начиная с первого (1), причем цвет третьего пояска (3) определяет число нулей, которые нужно приписать к двум первым цифрам, чтобы получить величину сопротивления. Четвертый поясок (4) обозначает класс точности резистора: золотой поясок — ±5%, серебряный — ±10%, отсутствие пояска - ±20%. На схемах постоянные резисторы имеют внутри символа обозначения знак, указывающий номинальную мощность рассеяния резистора (рис. 2. 1, б). Рядом с условным обозначением резистора указывается величина его номинального сопротивления и знак R с цифрой или числом, указывающим порядковый номер резистора на схеме.
Рис. 2. 1. Маркировка резисторов и обозначение их мощности на схемах: а) пример маркировки отечественного резистора. Расшифровка: тип МЛТ, мощность рассеяния 2 Вт, 2, 2 кОм, отклонение величины сопротивления 5%; 6) пример маркировки иностранного резистора: 1-4 — номера поясков. В данном случае цвета поясков: 1 — коричневый, 2 — черный, 3 — черный, 4 — серебряный. Расшифровка: 100 Ом, класс точности ±10%; в) обозначение мощности рассеяния резисторов на схемах. Величины номинальных сопротивлений от 1 до 99 Ом указываются числом без единицы измерения, а если число содержит дробь, то с указанием единицы измерения, например, 56, 5, 6 О. м. Величины сопротивлений от 1 до 999 кОм обозначаются числом с буквой к — 5, 6к, 56к. Величины сопротивлений в мегаомах на схемах указывают числом без единицы измерения, причем в целом числе при этом присутствуют запятая и нуль — 56, 0. Данные некоторых резисторов приведены в табл. 2Д Полупроводниковые нелинейные резисторы, в отличие от рассмотренных линейных резисторов, обладают способностью изменять свое сопротивление под действием управляющих факторов: температуры, напряжения, магнитного поля и др. Терморезисторы, или термисторы, имеют резко выраженную зависимость электрического сопротивления от температуры.
Терморезисторы могут быть как с отрицательным, так и с положительным коэффициентом сопротивления — позисторы. Таблица 2. 4 ДАННЫЕ НЕКОТОРЫХ РЕЗИСТОРОВ
Наряду с параметрами, сходными с параметрами линейных резисторов, терморезисторы имеют свои параметры. Коэффициент температурной чувствительности В определяет характер температурной зависимости данного вида терморезистора. Постоянная времени характеризует тепловую инерционность. Она равна времени, в течение которого температура терморезистора изменяется на 63% при перенесении его из воздушной среды с температурой 0 °С в воздушную среду с температурой 100 °С. Варисторы обладают резко выраженной зависимостью электрического сопротивления от приложенного к ним напряжения. Данные некоторых нелинейных резисторов показаны в табл. 2. 5. Таблица 2. 5 НЕЛИНЕЙНЫЕ РЕЗИСТОРЫ
Отказы резисторов происходят в основном из-за обрывов в токопроводящей цепи, из-за нарушений контактов и от перегрева, приводящего к перегоранию проводящего слоя. Вследствие перегорания проводящего материала происходят внезапные отказы, а вследствие дрейфа сопротивления резистора — постепенные отказы. Часть отказов резисторов зависит от состояния других деталей в аппаратуре и их отказов, значительное число отказов происходит из-за их неправильного применения. При выборе резистора нужно учитывать как его параметры, так и условия среды, где он будет работать — температуру, влажность, вибрации и т. д. Следует также учитывать, что у резисторов существует максимальная частота приложенного напряжения, при которой их сопротивление начинает меняться, и допускаемое напряжение. При определении состояния работающих резисторов или новых для замены вышедших из строя необходима их проверка. Постоянные резисторы проверяют внешним осмотром на отсутствие механических повреждений и соответствие параметров, указанных на корпусе, принципиальной электрической схеме. Сопротивление резисторов измеряется омметром. При осмотре резистора проверяют целость корпуса, его покрытия, прочность выводов.
Целость выводов проверяют измерением сопротивления резистора при их покачивании. Переменные резисторы после внешнего осмотра проверяют на плавность изменения сопротивления путем его измерения при вращении оси, на соответствие закона изменения сопротивления резистора его типу, сопротивление резистора при крайних положениях оси. При измерении сопротивления резистора при вращении его оси часто наблюдаются скачки сопротивления, что говорит о неисправности резистора и о необходимости его замены. Для замены необходим соответствующий подбор резистора. Параметры резистора должны соответствовать условиям его применения по нагрузке и внешней среде, фактическая мощность, рассеиваемая на резисторе, и его температура должны быть ниже предельных значений по техническим условиям на резистор. По величине отклонения сопротивления резистора от номинального резисторы выбирают с учетом особенностей цепей, где они работают. Если большое отклонение сопротивления мало влияет на работу устройства, то можно применять резисторы с отклонением 20%. Такими резисторами могут быть резисторы в цепях управляющих сеток ламп, в цепи коллекторов транзисторов. Если от величины сопротивления резистора зависит режим работы цепи, то следует применять резисторы с допуском 5 или 10%. К ним относятся резисторы в цепях эмиттера и базы транзистора. В цепях, где требуется постоянство сопротивления, применяются резисторы с допуском не более 2%. Работа резистора в схеме проявляется его нагревом. Относительно сильный нагрев (до 300 С) для резистора не опасен, выделяющееся тепло может отрицательно повлиять на соседние детали. В таких случаях для уменьшения нагрева резистора его нужно заменить на другой, большей мощности, но с теми же другими параметрами.
Синхронные машины
Схема синхронной машины показана на рис. 2.24. Синхронная машина отличается от асинхронной тем, что ток в обмотке ротора появляется не при вращении ее в магнитном поле статора, а подводится к ней от постороннего источника постоянного тока. Статор синхронной машины выполнен так же, как и асинхронной, и на нем обычно расположена трехфазная обмотка. Обмотка ротора образует магнитную систему с тем же числом полюсов 2р, что и у статора. Она создает магнитный поток возбуждения и называется обмоткой возбуждения. Вращающаяся обмотка ротора соединяется с внешней
цепью источника постоянного тока с помощью контактных колец и щеток. При вращении ротора с частотой n2 его магнитное поле возбуждения наводит в статоре ЭДС E1, частота которой
f1=p*n2/60
При подсоединении обмотки статора к нагрузке протекающий по ней ток будет создавать магнитный поток, частота вращения которого
n1=60f1/p
Из сравнения этих выражений видно, что п1 =n2 т. е. магнитные поля статора и ротора вращаются с одинаковой частотой, поэтому такие машины называются синхронными.
Рис. 2.24. Схема синхронной машины:
В — обмотка возбуждения, Uв — напряжение В цепи возбуждения
Результирующий магнитный поток создается совместным действием обмоток возбуждения и статора и вращается с той же частотой, что и ротор.
Обмотка якоря в синхронной машине — обмотка, в которой индуцируется ЭДС и к которой присоединяется нагрузка.
Индуктор в синхронной машине — часть машины, на которой расположена обмотка возбуждения.
В схеме на рис. 2.24 статор является якорем, а ротор — индуктором, но может быть и обращенная схема, в которой статор — индуктор и ротор — якорь.
Синхронная машина может работать генератором или двигателем.
В машине с неподвижным якорем применяются две разновидности ротора: явнополюсный ротор имеет явно выраженные полюсы, неявнополюсный ротор не имеет явно выраженных полюсов.
Постоянный ток в обмотку возбуждения синхронной машины может подаваться от специального генератора постоянного тока, установленного на валу машины и называемого возбудителем, или от сети через полупроводниковый выпрямитель.
Наибольшее распространение получил генераторный режим работы синхронных машин, и почти вся электроэнергия вырабатывается синхронными генераторами.
Синхронные двигатели применяются при мощности более 600 кВт и до 1 кВт как микродвигатели.
Синхронные генераторы на напряжение до 1000 В применяются в агрегатах для автономных систем электроснабжения. Данные некоторых таких генераторов приведены в табл. 2.42. Агрегаты с этими генераторами могут быть стационарными и передвижными. Большинство агрегатов применяются с дизельными двигателями, но приводом их могут быть газовые турбины, электродвигатели и бензиновые двигатели.
Неисправности синхронных машин приведены в табл. 2.44.
Таблица 2.42 СИНХРОННЫЕ ЯВНОПОЛЮСНЫЕ ГЕНЕРАТОРЫ ДЛЯ АВТОНОМНЫХ ЭНЕРГЕТИЧЕСКИХ СИСТЕМ
Тиристоры
Тиристором .называется полупроводниковый прибор на основе четырехслойной структуры р-n-р-n, имеющий три р-n перехода. Напряжения подводятся так, что крайние переходы работают в прямом направлении, а средний — в обратном направлении. Прибор обладает свойством диода.
Если у прибора сделаны выводы только от крайних областей структуры, то он называется диодным тиристором или динистором.
Триодный тиристор, или просто тиристор, включается импульсами тока управления, а выключается или подачей обратного напряжения или прерыванием тока с помощью другого аппарата.
Запираемый тиристор выключается с помощью импульсов тока управления
Симистор (симметричный тиристор) является эквивалентом встречно-параллельного соединения двух тиристоров и способен при открытом состояние пропускать ток в обоих направлениях. Включение происходит импульсами тока управления.
Оптронный тиристор включается с помощью светового сигнала.
Основные параметры некоторых тиристоров показаны в табл. 2.15,
Таблица 2.15 ТИРИСТОРЫ
где Iос.ср.макс-ток в открытом состоянии средний максимально допустимый;
Iос, д. макс — ток в открытом состоянии действующий максимально допустимый;
Iз,и-ток запираемый импульсный (для запираемых тиристоров);
Uзс, п — напряжение в закрытом состоянии повторяющееся — наибольшее мгновенное значение напряжения, прикладываемое к тиристору;
Uзс. МАКС — напряжение в закрытом состоянии максимально допустимое;
Uот — напряжение открывания динистора;
Uобр, п — напряжение обратное повторяющееся, наибольшее значение напряжения, прикладываемого к тиристору;
Uобр, макс — напряжение обратное допустимое, максимальное значение;
Iзс, п — ток в закрытом состоянии повторяющийся;
Iзс — постоянный ток в закрытом состоянии;
Iу,от — т0К управления отпирающий;
Iу, от, и ~ отпирающий импульсный ток управления;
Iу, з, и — ток управления запирающий импульсный;
tвкл — время включения;
tвыкл — время выключения.
Тиристоры применяются в преобразователях электрической энергии.
Трансформаторы, применяемые в устройствах автоматики и электроники
Так как трансформаторы устройств автоматики и электроники отличаются от катушек только тем, что они изготовляются с сердечником, все сказанное в отношении катушек относится и к ним. Отличие только в том, что в трансформаторах две или более обмоток, которые выходят из строя не все сразу.
Нагрузкой трансформатора является ток во вторичной обмотке или обмотках, который может увеличиваться при перегрузке или при коротком замыкании в цепи данной обмотки.
Как показала практика, у обмоток трансформаторов, по которым протекает большой ток, могут греться места пайки выводов. Причина может быть в том, что сечение проводов обмотки или отходящих проводов от этой обмотки во внешнюю цепь меньше, чем этого требует ток нагрузки в данной цепи. Другой причиной может быть некачественная пайка выводов. Попытки перепайки могут быть не всегда успешны, так как для обмотки могут быть применены провода не из меди, а из сплавов, не поддающихся пайке в эксплуатационных условиях. В таком случае пайку можно заменить болтовым или винтовым соединением.
Если трансформатор требует замены, то новый трансформатор перед установкой должен проверяться внешним осмотром или с помощью приборов. Омметром можно проверить целость обмоток трансформатора, отсутствие замыканий между обмотками и каждой обмотки с корпусом.
Сопротивление изоляции между обмотками и между обмоткой и корпусом проверяется мегаомметром.
Бывает, что не обозначены выводы разных обмоток трансформатора. Тогда принадлежность выводов обмоток можно проверить с помощью омметра, если известна схема трансформатора, где указаны сопротивления обмоток. Присоединяя омметр поочередно к разным выводам и измеряя сопротивления, по их величине можно определить принадлежность выводов обмоток.
Наличие или отсутствие напряжения на обмотках и его величину можно определить с помощью вольтметра.
Когда напряжения обмоток трансформаторов электронных устройств не известны, их можно определить следующим образом. Обмотка накала ламп, как правило, имеет толстый провод.
В этом случае нужно вынуть одну из ламп устройства и вставить концы накальной обмотки проверяемого трансформатора в накальные гнезда панели вынутой лампы. После этого, при наличии напряжения в цепи накала, измерив напряжения между выводами обмоток трансформатора, можно по величине напряжений определить принадлежность обмоток. Можно применить этот метод и при наличии другого источника напряжения, если в трансформаторе известна обмотка, напряжение которой соответствует напряжению этого источника. Присоединив концы этой обмотки к источнику напряжения и замерив напряжения на других обмотках трансформатора, можно сделать вывод о назначении этих обмоток. При выходе из строя трансформатора легче всего его заменить на такой же резервный. Если нет точно такого трансформатора, можно применить другой, если в нем есть обмотки с нужными величинами напряжений и не меньшей мощности. В случае, если другой трансформатор не подходит по месту крепления, место крепления в устройстве можно подогнать под новый трансформатор или трансформатор укрепить в другом месте данного устройства.
Транзисторы
Транзисторами называются полупроводниковые приборы на основе кристалла с двумя р-n переходами и служащие для усиления электрических сигналов. В структуре транзистора возможно количество переходов, отличное от двух. Транзисторы с двумя р-п переходами называются биполярными, так как их работа основана на использовании зарядов обоих знаков.
Полевой транзистор — полупроводниковый прибор, усилительные свойства которого обусловлены потоком основных носителей, протекающим через проводящий канал, и управляемый электрическим полем. В полевом транзисторе используются заряды одного знака.
В кристалле полупроводника транзистора созданы три области электропроводности с порядком чередования р-n-р или n-р-n.
Средняя область кристалла транзистора называется базой, крайние области — эмиттером и коллектором. Переходы
между базой и эмиттером и базой и коллектором называются соответственно эмиттерным и коллекторным.
Для обозначения величин, относящихся к базе, эмиттеру и коллектору, применяют буквы б, э, к.
На изображении транзистора стрелка указывает условное направление тока в эмиттере от плюса к минусу.
В зависимости от напряжений на переходах транзистора он может работать в трех режимах.
Активный режим Получается при напряжениях прямом на эмиттерном и обратном на коллекторном переходах.
Режим отсечки или запирания — напряжения на обоих переходах обратные.
Режим насыщения — напряжения на обоих переходах прямые.
Основным является активный режим.
В схеме с транзистором образуются две цепи — входная и выходная. Во входную цепь включается управляющий сигнал, который должен быть усилен, а в выходную — нагрузка, на которой выделяется усиленный сигнал.
Предельно допустимые параметры при работе транзистора:
I к. макс — постоянный ток коллектора;
Pк, макс — постоянная рассеиваемая мощность коллектора;
Uкэ — постоянное напряжение коллектор—эмиттер;
Uкэ, R — то же при определенном сопротивлении в цепи база—эмиттер,
Uкб, макс — постоянное напряжение коллектор—база;
Uэб, макс — постоянное напряжение эмиттер—база;
h21э — коэффициент передачи тока в режиме большого сигнала в схеме с общим эмиттером;
h21э — коэффициент передачи тока в режиме малого сигнала в схеме с общим эмиттером.
Коэффициент передачи означает отношение величины сигнала на выходе к величине сигнала на входе, он называется также коэффициентом усиления. . Из частотных параметров отметим: fh21 — предельная частота коэффициента передачи тока: частота, на которой модуль коэффициента передачи тока h21э. уменьшается на 3 дБ; fгр — граничная частота коэффициента передачи тока в схеме с общим эмиттером: частота, на которой h21э равен 1. Статические параметры транзистора — параметры, определяемые при постоянном напряжении на всех его электродах. Параметры некоторых биполярных транзисторов приведены в табл. 2.16. Таблица 2. 16 ДАННЫЕ НЕКОТОРЫХ ТРАНЗИСТОРОВ
Схемы включения транзисторов разделяются в зависимости от того, какой электрод транзистора является общим относительно входного и выходного переменных напряжений. В соответствии с этим схемы называются схемами с общим эмиттером — ОЭ, общей базой — ОБ, общим коллектором — ОК Схема ОЭ является более распространенной, так как дает наибольшее усиление по мощности. Данные схемы включения транзисторов приведены на рис. 2. 3.
Рис. 2. 3. Схемы включения транзисторов а.) с общим эмиттером; б) с общей базой; в) с общим коллектором. ИС — источник сигнала, подаваемого на вход транзистора, Uвх, Uвых — входное и выходное напряжения сигнала, Uбэ, Uбк, Uкэ — напряжения между базой и эмиттером, базой коллектором, коллектором и эмиттером, iб,iэ,iк- токи базы, эмиттера и коллектора, E1, Е2 — источники питания, С1, С2, — конденсаторы большой емкости, сопротивление которых для переменного сигнала является малым и через которые коллектор по переменному току замкнут, являясь в схеме общим.
Выпрямители
Многие потребители энергии требуют для своей работы постоянного тока. К ним относятся аппаратура радиоэлектроники и автоматики, двигатели постоянного тока в промышленности и на транспорте, технологические процессы в промышленности, например, электролиз.
Преобразование переменного тока в постоянный осуществляется в выпрямителях с использованием полупроводниковых приборов.
Основными частями выпрямителя являются:
вентильная группа, преобразующая переменный ток в постоянный, трансформатор, преобразующий величину напряжения, получаемого из сети, в величину, нужную для приемника постоянного напряжения;
сглаживающий фильтр для уменьшения пульсации выпрямленного напряжения.
Кроме того, выпрямитель может иметь устройства для стабилизации и регулирования выпрямленного напряжения.
По числу фаз первичной обмотки трансформатора выпрямители могут быть однофазными и трехфазными.
На рис. 2. 5 показаны распространенные схемы выпрямителей.
Рис. 2. 5. Схемы выпрямителей:
а) однофазная мостовая; б) трехфазная нулевая; в) трехфазная мостовая. i2,i2а,i2б,i2с — токи в обмотках трансформатора; iнагр — ток в нагрузке;
Rнагр — сопротивление.нагрузки; А — общий анод; К — общий катод.
Выпрямители с регулированием выпрямленного напряжения, или управляемые, могут работать по тем же схемам рис. 2.5, б, в, но с применением управляемых диодов и системы управления этими диодами.
Однофазная мостовая схема выпрямления (рис. 2.5, а) состоит из четырех диодов, включенных по схеме моста, причем
нагрузка присоединяется к общей точке катодов двух диодов и к общей точке анодов других двух диодов, составляя диагональ моста 1—2. Другая диагональ моста присоединяется к вторичной обмотке трансформатора. Направление тока в полупериод, когда знак «+» на верхнем конце обмотки трансформатора, показано на рисунке, при этом ток проводят диоды VD1 и VD3, а другие диоды находятся под обратным напряжением. В следующий полупериод ток проводят диоды VD2 и VD4. Ток в нагрузке всегда идет от точки 1 к точке 2, от зажима «+» выпрямителя к зажиму «—».
Трехфазная нулевая схема (рис. 2. 5, б) состоит из 3 вентилей, аноды которых присоединяются к выводам вторичной обмотки трансформатора, соединенной звездой, а катоды присоединяются общей точкой к нагрузке.
Второй зажим нагрузки присоединяется к нулевой точке вторичной обмотки трансформатора. Ток через вентиль проходит в течение трети периода, а потом переходит на другой вентиль. Пульсации выпрямленного напряжения в данной схеме меньше, чем в однофазной мостовой. В трехфазной мостовой схеме выпрямления (рис. 2. 5, в) применяются шесть вентилей, образующих две группы: 3 вентиля с общим анодным выводом, а 3 — с общим катодным выводом. Нагрузка присоединяется к этим общим выводам. При активной нагрузке в любой момент времени ток проходит через два вентиля из разных групп. Пульсации выпрямленного напряжения в данной схеме меньше, чем в трехфазной нулевой. В выпрямительных установках диоды вместе с охладителями входят в состав модулей, а модули входят в состав выпрямительного блока кассетного типа. Применяется воздушное или жидкостное охлаждение диодов. При воздушном охлаждении для приборов на токи 10... 25* А применяют охладители в виде пластин, а для более мощных приборов — специальные радиаторы. Воздушное охлаждение бывает естественным и принудительным. При естественном охлаждении из-за худших условий охлаждения по сравнению с принудительным охлаждением нагрузку приборов приходится снижать на 40%. Принудительное охлаждение производится с помощью вентиляторов. При жидкостном охлаждении в индивидуальных или групповых охладителях циркулирует вода, подаваемая насосами. В тиристорных установках на токи 25, 50, 100 А применяется один шкаф для всех узлов установки, например, шкаф КТЭ. В его состав входят рама с автоматическими выключателями, кассеты системы регулирования, кассета системы защиты и сигнализации, блок питания, силовой тиристорный блок, измерительные приборы, устройства сигнализации. Тиристорный агрегат AT на ток до 500 А состоит из шкафа вводного устройства и трансформатора, шкафа преобразователя, шкафа с автоматическим выключателем и реактором. Шкафы имеют приборы измерения напряжения и тока, приборы сигнализации. На надежность выпрямительного устройства влияет качество монтажа.
При монтаже надо обратить внимание на затягивание зажимов токоведущих частей, не допуская в то же время деформации металла в месте соединения. Как правило, агрегаты общепромышленных установок предназначены для работы в помещениях при температуре окружающего воздуха 1... 50 С, относительной влажности воздуха не более 85... 90% при+ 20 С или 50% при +40 С, отсутствии в помещении агрессивных газов и паров. Агрегаты монтируют на перекрытиях или полах с креплением болтами, причем отклонение от вертикали должно быть не более 5 угл град. После монтажа агрегата производится наладка его блоков. Сопротивление изоляции в силовых цепях измеряется мегаомметром на напряжение 2, 5 кВ и должно быть не менее 50 МОм, в цепях управления — мегаомметром на 0, 5 кВ и должно быть не ниже 0, 5 МОм. Основным условием правильной работы агрегата является обеспечение строгой последовательности управляющих импульсов на электродах соответствующих тиристоров, что достигается фазировкой системы управления. Фазировка осуществляется с помощью осциллографа по инструкции. При работе вентилей имеют место перенапряжения не только при аварийных режимах, но и при обычной работе. Это объясняется тем, что цепи с вентилями имеют реактивные элементы в виде дросселей и конденсаторов, в которых происходят колебания напряжения при переходе тока с вентиля на вентиль. Так как этот переход тока происходит непрерывно, то непрерывно происходят и колебания напряжения. Вследствие этого на вентилях могут быть перенапряжения, представляющие для них опасность. Перенапряжения могут происходить и при переключениях автоматами и контакторами. Неисправности выпрямительных установок и методы их устранения приведены в инструкциях по эксплуатации. Некоторые неисправности установок приведены в табл. 2. 22. Таблица 2.22 НЕИСПРАВНОСТИ ТИРИСТОРНЫХ ПРЕОБРАЗОВАТЕЛЕЙ
ЭКСПЕРИМЕНТ Фильтры нижних и верхних частот
Цели
После проведения данного эксперимента Вы сможете рассчитывать частоту отсечки резистивно-емкостных фильтров нижних и верхних частот, а также познакомитесь с влиянием изменений частоты на выходное напряжение.
Необходимые принадлежности
* Цифровой мультиметр
* Макетная панель
* Генератор функций
* Элементы:
один дисковый конденсатор 0.01 мкФ, один резистор 15 кОм.
ВВОДНАЯ ЧАСТЬ
Фильтр — это частотночувствительная схема, выходная амплитуда которой варьирует в зависимости от частоты на входе.
Фильтр нижних частот — это такой фильтр, который пропускает частоты меньше некоторой определенной частоты отсечки (fco), но подавляет те частоты, которые больше частоты отсечки. Фильтр верхних частот — это такой фильтр, который пропускает частоты, которые больше некоторой определенной частоты отсечки, но подавляет
те частоты, которые меньше частоты отсечки. На рисунке 23-1 представлены выходные характеристики фильтра нижних частот и фильтра верхних частит.
Рис. 23-1.
Фильтры нижних и верхних частот могут быть реализованы различными способами. Простейший фильтр — это резистор и конденсатор, соединенные между собой, как показано на рисунке 23-2.
Рис. 23-2.
Характеристики фильтров
Ключевой характеристикой фильтра нижних частот или фильтра верхних частот является его частота отсечки (fco). Как Вы можете видеть на основании рисунка 23-1, частота отсечки — это такая частота, где выходное напряжение фильтра падает до 70,7% от его максимально возможного выходного напряжения. В фильтре нижних частот выходное напряжение остается относительно постоянным по мере того, как возрастает входная частота. С приближением к частоте отсечки выходное напряжение начинает уменьшаться. Когда достигается частота отсечки,'выходное напряжение понижается до 70,7% от его максимально возможного значения. Выходное напряжение продолжает убывать по мере возрастания частоты.
В фильтре верхних частот выходное напряжение имеет максимальное значение, когда входная частота с запасом превышает частоту отсечки.
Когда входная частота постепенно уменьшается, выходное напряжение понижается по мере приближения к частоте отсечки. Когда достигается частота отсечки, выходное напряжение понижается до 70,7% рт его максимально возможного-значения. Выходное напряжение продолжает убывать по мере дальнейшего уменьшения входной частоты. В фильтре нижних частот сигналы с частотой ниже fco пропускаются без ослабления или лишь с незначительным ослаблением; сигналы с,частотой выше fco быстро ослабляются. В фильтре верхних частот сигналы с частотой ниже fco значительно подавляются, тогда как сигналы с частотой выше fco, пропускаются с минимальным противодействием. Снова обратитесь к рисунку 23-1. Частота отсечки простого резистивно-емкостного фильтра, подобного показанному-на рисунке 23-2, вычисляется при помощи следующей формулы: fco = 1/2*3.147RC Пример: Если R = 3,3 кОм и С = 0,15 мкф, частота отсечки равна: fco = 1/6,28(3300)(0,15 х 10^-6)
fco= 322 Гц Краткое содержание В данном эксперименте Вы познакомитесь с действием резистивно-емкостных фильтров верхних и нижних частот. Поскольку в настоящий момент у Вас нет средств для точного измерения частоты, может быть получено лишь общее представление о работе фильтра. Тем не менее, Вы сможете четко показать, что указанные фильтры действительно пропускают некоторые частоты с минимальным ослаблением, тогда как другие частоты ими сильно подавляются.
Рис. 23-3. ПРОЦЕДУРА 1. Вычислите частоту отсечки фильтра нижних частот, показанного на рисунке 23-3. fco______Гц 2. Соберите схему, показанную на рисунке 23-3, при помощи Вашей макетной панели. Подключите резистивно-емкостной фильтр ко входу генератора функций. 3. Установите регулятор частоты генератора функций на частоту 10 Гц. После этого поворачивайте регулятор амплитуды, чтобы подать напряжение с размахом 4 В к схеме. 4. Далее измерьте выходное напряжение фильтра на конденсаторе. Запишите полученное значение. Выходное напряжение фильтра = ___ В 5. Подключите осциллограф к конденсатору фильтра.
При наблюдении за выходным напряжением поворачивайте ручку регулятора частоты, чтобы увеличить частоту до 1000 Гц. Увеличивается или уменьшается выходное напряжение? ________ увеличивается _________ уменьшается 6. Основываясь на входном значении в шаге 3, вычислите значение выходного напряжения при частоте отсечки. Напряжение на частоте отсечки = ________ В 7. Подавайте при помощи генератора функций синусоидальный сигнал в схему на каждой из частот, указанных в приведенной ниже таблице Установите размах напряжения на входе схемы равным 4 В. В процессе изменения частот снова проконтролируйте входное напряжение, чтобы убедиться, что оно все еще имеет размах 4 В. Измеряйте выходное напряжение фильтра на каждой частоте и записывайте Ваши результаты в следующую таблицу.
Входная частота | Выходное напряжение |
10Гц | |
100 Гц | |
200 Гц | |
500 Гц | |
1000 Гц | |
2000 Гц | |
5000 Гц | |
10кГц | |
20 кГц |
8.. Постройте на основании Ваших данных график частотной характеристики на полулогарифмической бумаге. 9. Теперь соберите схему фильтра верхних частот, показанного на рисунке 23-4. 10.Определите частоту отсечки фильтра верхних частот на рисунке 23-4. fco______Гц 11.Настройте частоту регулятором генератора функций на 10 Гц и величину размаха напряжения на 4 В.
Рис. 23-4. 12.Наблюдайте выходное напряжение фильтра на резисторе 1 кОм. Наблюдая за выходным напряжением на экране осциллографа, повышайте частоту на выходе генератора функций вплоть до 10кГц. Заметьте, как изменяется выходное напряжение по мере повышения частоты. Объясните эти изменения. 13.Как изменяется выходное напряжение с повышением частоты? __________ увеличивается __________ уменьшается 14. Подавайте при помощи генератора функций синусоидальный сигнал в схему на каждой из частот, указанных в приведенной ниже таблице. Установите размах напряжения на входе схемы равным 5 В. В процессе изменения частоты при необходимости поддерживайте на входе схемы величину размаха 5 В. Измеряйте выходное напряжение фильтра на резисторе для каждой частоты и записывайте Ваши результаты в таблицу.
Входная частота | Выходное напряжение |
10 Гц | |
100 Гц | |
200 Гц | |
500Гц | |
1000 Гц | |
2000 Гц | |
5000 Гц | |
10 кГц | |
20кГц |
15. Постройте на основании Ваших табличных данных график частотной характеристики на полулогарифмической миллиметровой бумаге, как Вы это делали в случае фильтра нижних частот. ОБЗОРНЫЕ ВОПРОСЫ 1. Резистивно-емкостной фильтр нижних частот имеет частоту отсечки 23222 Гц. Сигнал с частотой 5,5 кГц при этом: а) пропускается фильтром, б) подавляется фильтром. 2. Резистивно-емкостной фильтр верхних частот имеет частоту отсечки 15 кГц. Какой сигнал при этом пропускается? а) 6,7 кГц, б) 36 кГц. 3. Сигнал на входе фильтра нижних частот имеет размах 5 В. Тогда выходное напряжение на резонансной частоте будет равняться: а) 3,5 В, б) 4,5 В, в) 5 В, г) 7 В. 4. Фильтр нижних частот имеет компоненты с величинами R = 4,7 кОм и С = 0,1 мкФ. Частота отсечки такого фильтра равна: а) 273 Гц, б) 339 Гц, в) 469 Гц, г) 501 Гц. 5. Внутри мультиметра имеется внутренняя схема, которая заставляет мультиметр действовать как: а) фильтр нижних частот, 6} фильтр верхних частот.
ЭКСПЕРИМЕНТ Измерения синусоидальных сигналов
Цели
После проведения данного эксперимента Вы сможете измерять при помощи мультиметра и осциллографа напряжения синусоидальных сигналов и осуществлять преобразование эффективных значении в значения размаха и наоборот.
Необходимые принадлежности
* Мультиметр (цифровой мультиметр)
* Осциллограф
* Генератор функций
* Источник постоянного напряжения
* Резистор 2,7 кОм
ВВОДНАЯ ЧАСТЬ
Имеется два основных метода измерения напряжений синусоидальных сигналов — при помощи мультиметра и при помощи осциллографа. Если используется мультиметр, показания прибора осуществляются непосредственно в вольтах, которые отмечаются на шкале указателем аналогового прибора или в виде десятичного числа на жидкокристаллическом или светодиодном индикаторе цифрового прибора. При этом представляемое на индикации значение является эффективным значением или среднеквадратическим значением. Оно является также более точным показанием.
Осциллограф визуализирует на экране синусоидальный сигнал. Это наиболее легкий и более точный метод для измерения размаха сигнала. Из двух этих устройств значение мультиметра является более точным, как уже упоминалось. Тем не менее, осциллограф позволяет Вам видеть сигнал, а также любой шум, искажение или помехи, которые могут сопровождать сигнал.
Ограничения приборов
Мультиметр имеет ограничение по высокой частоте. Это предельное значение частоты варьирует от прибора к прибору, однако оно не превышает обычно нескольких тысяч герц. Осциллограф же может выполнять измерения напряжений сигналов с частотой до нескольких мегагерц.
Мультиметр позволяет Вам также измерять ток, тогда как осциллограф нет. При включении мультиметра последовательно с цепью или с компонентом Вы можете получить индикацию эффективной величины тока. Единственным способом измерить ток при помощи осциллографа является косвенный способ, а именно, надо измерить напряжение на резисторе, преобразовать значение размаха в эффективное значение, а затем разделить его на сопротивление резистора.
Формулы преобразования
При выполнении тестов и измерений в электронике обычно является необходимым преобразование
эффективных значении в значения размаха и наоборот.
Для преобразования эффективных значении в значения размаха используйте следующие формулы: Vpp = 2,828 Vrms Ipp = 2,828 Irms (где: РР — размах, rms — эффективное значение) Для преобразования значений размаха, в эффективные значения используйте следующие формулы: Vrms= 0,3535 Vpp
Irms= 0,3535 Ipp Пример: Пусть требуется преобразовать показание 6,3 Vpp в эффективное значение: Vrms= 0,3535 Vpp = 0,3535 (6,3) = 2,23 В Пример: Пусть требуется преобразовать эффективное значение тока 7 мА в значение размаха: Ipp = 2,828 Irms = 2,828 (7) = 19,8 мА Осциллограф может выполнять также измерения по постоянному току. Смещение горизонтальной линии по вертикали относительно нулевой линии на экране осциллографа представляет собой входной уровень по постоянному току. Для измерения постоянного тока горизонтальную линию развертки совместите с линией координатной сетки, соответствующей нулю. Подайте входной сигнал постоянного тока, затем измерьте смещение по вертикали в делениях и преобразуйте в напряжение. Краткое содержание Вы познакомитесь с измерением токов и напряжений синусоидальных сигналов и выполните преобразования единиц в следующей процедуре. ПРОЦЕДУРА 1. Включите осциллограф и визуализируйте горизонтальную линию. 2. Включите генератор функций, выберите формирование синусоидального сигнала и установите поворотный селектор на 1 кГц. Подключите выход генератора ко входу осциллографа. Визуализируйте сигнал. Отрегулируйте осциллограф для получения стабильной индикации. Отрегулируйте выход генератора до получения значения сигнала 4 V 3. Вычислите эффективное значение (rms) этого синусоидального сигнала. Измерьте эффективное значение при помощи цифрового мультиметра. Сравните Ваши расчетное и измеренное значения. Vэфф(расчетное) = ______ В Vэфф (измеренное) = ______ В 4. Измерьте период синусоидального сигнала при помощи осциллографа. Т = _______ секунд 5. Рассчитайте частоту синусоидального сигнала при помощи измеренного Вами периода. Сравните Ваши расчетное и измеренное значения и установку регулятора на генераторе функций. f = ______ Гц 6.
Повторите шаги 2—5 с синусоидальным сигналом 500 мВ на частоте 60 Гц и прямоугольным сигналом 15кГц, 3В Какое значение имеет эффективное напряжение в связи с синусоидальным сигналом? 7. Подключите выход генератора функции к резистору 2, 7 кОм. Отрегулируйте генератор для формирования 9 V с частотой 120 Гц. Проконтролируйте напряжение при помощи осциллографа. 8. Рассчитайте ток через резистор, используя закон Ома. I = ______ мА 9. Измерьте ток через резистор, используя цифровой мультиметр. Сравните Ваши расчетное и измеренное значения. I = ______ мА 10. Отключите резистор от генератора. Включите один из лабораторных источников постоянного напряжения. Отрегулируйте его на формирование выходного напряжения+ 6 В. Измерьте это выходное напряжение при помощи цифрового мультиметра и осциллографа. Повторите действия для выходного постоянного напряжения-12 В. 11. Подключите выход генератора функций последовательно с источником постоянного напряжения и визуализируйте результирующий сигнал. Установите выходное напряжение источника питания на + 5 В и отрегулируйте генератор функций на 400 Гц и 2 Vpp. Начертите диаграмму комбинированного сигнала. 12. Приведите список источников возможных погрешностей, которые могут быть причиной раз личий между расчетными и измеренными значениями в предыдущих шагах. ОБЗОРНЫЕ ВОПРОСЫ 1. Чему равно напряжение размаха 85 мВ в переводе на эффективное значение? а) 6 мВ, б) ЗОмВ, в) 170 мВ, г) 240 мВ. 2. Чему равно эффективное значение 16 мкА в пересчете на значение размаха? а) 5, 7 мкА, б) 11, 3 мкА, в) 7, 07 мкА, г) 45, 23 мкА. 3. Мультиметр дает индикацию: а) значений амплитуды, б) "значений размаха (двойной амплитуды), в) эффективных значений, г) средних значений. 4. Осциллограф может измерять постоянный ток: а) высказывание истинно, б) высказывание ложно. 5. Какое устройство дает более точные измерения? а) осциллограф, б) мультиметр.
ЭКСПЕРИМЕНТ Катушки индуктивности и переменный ток
Цели
После проведения данного эксперимента Вы сможете объяснить эффект индуктивности в схеме переменного тока и рассчитать значения индуктивности и реактивного сопротивления по результатам измерении.
Необходимые принадлежности
* Осциллограф
* Цифровой мультиметр
* Катушка индуктивности 100 мГн
* Генератор функций / сигнал-генератор
ВВОДНАЯ ЧАСТЬ
Когда катушка индуктивности включается в цепь переменного тока, непрерывные изменения напряжения приводят к изменениям тока, которые в свою очередь генерируют то возрастающее, то убывающее магнитное поле. Это магнитное поле индуцирует встречное напряжение в катушке индуктивности, и оно противодействует изменениям тока. В результате имеет место непрерывное противодействие протеканию тока. Это противодействие называется индуктивным сопротивлением (XL).
формула индуктивного сопротивления
Индуктивное сопротивление катушки или дросселя зависит от частоты приложенного переменного напряжения (f) и значения индуктивности (L) в генри. Для вычисления индуктивного сопротивления, выражаемого в омах, служит простая формула:
Индуктивное сопротивление прямо пропорционально частоте и индуктивности. Если известно индуктивное сопротивление, путем преобразования основной формулы может быть найдена или частота, или индуктивность, как показано ниже:
формула полного сопротивления
Вспомните, что чистых индуктивностей нет, поскольку катушки индуктивности сделаны с использованием проволоки, которая имеет сопротивление. Полное сопротивление, оказываемое катушкой индуктивности переменному току, представляет собой, следовательно, комбинацию индуктивного сопротивления и обычного (активного) сопротивления. Это комбинированное противодействие известно как полное сопротивление (или импеданс). Полное сопротивление может быть вычислено при помощи формулы:
Вспомните, что индуктивность приводит к запаздыванию тока относительно напряжения. По
этой причине напряжения на катушке индуктивности и на резисторе сдвинуты по фазе на 90 градусов друг относительно друга.
Это как раз и не позволяет нам просто сложить вместе индуктивное сопротивление и активное, сопротивление, чтобы получить величину импеданса. Если известно полное сопротивление, а индуктивное сопротивление или активное сопротивление неизвестно, предыдущая формула может быть преобразована для их нахождения следующим образом:
Если известно полное сопротивление индуктивной схемы, Вы можете рассчитать ток в схеме, если Вы знаете приложенное напряжение. Это осуществляется применением закона Ома: I=V/Z Естественно, эта формула также может быть преобразована для вычисления двух других переменных, если это потребуется: z=v/I V=IZ Краткое содержание В данном эксперименте Вы познакомитесь с эффектом индуктивности в схеме переменного тока. ПРОЦЕДУРА 1. Измерьте сопротивление обмотки катушки индуктивности при помощи мультиметра. Сопротивление постоянному току =____ Ом 2. Присоедините катушку индуктивности 100 мГн к сигнал-генератору, формирующему напряжение размаха 4 Vpp с частотой 400 Гц. 3. Теперь измерьте фактическое значение тока первичной обмотки. Вспомните, что амперметр должен включаться последовательно со схемой для выполнения измерения. Подключите мультиметр для измерения переменного тока. Убедитесь, что генератор продолжает формировать 4 Vpp. Is= _____ МА 4. Используя информацию, которую Вы собрали в предыдущих шагах, и формулы, приведенные в вводной части, рассчитайте полное сопротивление схемы. Z = _____ Ом 5. Используя информацию, которую Вы собрали в предыдущих шагах, и формулы, приведенные в вводной части, рассчитайте индуктивность (L) катушки. L = _____ мГн ОБЗОРНЫЕ ВОПРОСЫ 1. При увеличении частоты переменного тока, пропускаемого через катушку индуктивности, индуктивное сопротивление: а) возрастает, б) уменьшается, в) остается без изменения. 2. При уменьшении величины индуктивности в схеме индуктивное сопротивление: а) возрастает, б) уменьшается, в) остается без изменения. 3. При уменьшении сопротивления катушки индуктивности ее полное сопротивление: а) возрастает, б) уменьшается, в) остается без изменения. 4.Единицей измерения для величины индуктивного сопротивления является: а) генри, б) фарада, в) ватт, г) ом. 5. Катушка индуктивности имеет (активное) сопротивление 120 Ом. Когда к катушке прикладывается переменное напряжение 24 В с частотой 60Гц, протекает ток 111 мА. Значение индуктивности составляет приблизительно: а) 0, 12Гн, б) 0, 35 Гн, в) 0, 48 Гн, г) 1, 2 Гн.
ЭКСПЕРИМЕНТ Конденсаторы и переменный ток
Цели
После проведения данного эксперимента Вы сможете рассчитывать и измерять токи и напряжения в последовательных и параллельных емкостных цепях.
Необходимые принадлежности
* Осциллограф
* Цифровой мультиметр
* Макетная панель
* Генератор функций
* Источник постоянного напряжения
* Элементы:
один конденсатор 0, 01 мкф, один резистор, 10 кОм.
ВВОДНАЯ ЧАСТЬ
Когда конденсатор используется в цепи переменного тока, он оказывает определенное противодействие току, которое называется емкостным сопротивлением. Емкостное сопротивление, подобно индуктивному сопротивлению, противодействует протеканию тока, но только в цепи переменного тока. Емкостное сопротивление измеряется в омах и зависит от частоты переменного тока и от емкости конденсатора. Емкостное сопротивление обратно пропорционально частоте (f) и емкости (С). Это
емкостное сопротивление может быть рассчитано при помощи формулы:
Обычно конденсаторы комбинируются с резисторами и другими компонентами в различные последовательные и параллельные цепи для создания фильтров, фазовращателей, цепей связи и прочих схем. Одной из наиболее распространенных конфигураций является последовательная резистивно-емкостная цепь, показанная на рисунке 20-1.
Рис. 20-1.
Исходное напряжение синусоидальной формы (Vs)прикладывается к резистору и конденсатору, включенным последовательно. Полное противодействие протеканию тока в этой цепи является комбинацией емкостного сопротивления и обычного (активного) сопротивления. Резисторы и конденсаторы функционируют различным образом, и поскольку конденсатор порождает сдвиг фаз в цепи на 90 градусов, нельзя непосредственно складывать сопротивление резистора и емкостное сопротивление, чтобы подсчитать общее сопротивление протеканию тока, которое называется полным сопротивлением или импедансом (Z). Для получения полного сопротивления используется приведенная ниже формула:
Теорема Пифагора и полное сопротивление
Это известная теорема Пифагора, используемая для решения прямоугольных треугольников.
Сопротивление, емкостное сопротивление и полное сопротивление могут быть представлены сторонами прямоугольного треугольника, как показано на рисунке 20-2А.
Рис. 20-2. В последовательной цепи один и тот же ток (I) протекает через все компоненты. Это означает, что ток через конденсатор имеет ту же величину, что и ток через резистор, причем эта величина равна величине тока, потребляемого от источника напряжения. Поскольку ток общий для всех компонентов, мы можем использовать закон Ома и умножить величину тока на величину сопротивления, емкостного сопротивления и полного сопротивления, чтобы вычислить напряжения в цепи. IR=Vr IXc= Vc IZ = Vs Следовательно, мы можем снова нарисовать треугольник, используя напряжения, полученные нами указанным выше образом (см. рис. 20-2Б). Теперь треугольник представлен напряжением на сопротивлении (Vr), напряжением на конденсаторе (Vc) и напряжением источника питания (Vs). Закон Кирхгофа говорит о том, что сумма падении напряжения на компонентах последовательной цепи равна напряжению источника питания. Это означает, что в том случае, если мы сложим напряжение на резисторе и напряжение на конденсаторе, мы должны получить в результате напряжение источника питания. Однако, как можно видеть на рисунке 20-2Б, напряжения не совпадают по фазе друг с другом. По этой причине напряжения не могут складываться друг с другом непосредственно, и мы должны использовать теорему Пифагора для решения прямоугольного треугольника. Подставляйте поэтому значения из рисунка 20-2Б в формулу в соответствии с теоремой Пифагора и находите напряжение источника питания следующим образом:
Итак, чтобы найти напряжение источника питания, просто измерьте напряжение на резисторе и напряжение на конденсаторе, возведите каждое значение в квадрат и сложите полученные значения друг с другом. После этого для получения значения напряжения источника питания извлеките корень квадратный из полученной суммы. Не забывайте, что при известном напряжении источника питания и одном из других напряжений Вы можете вычислить неизвестное напряжение при помощи простого преобразования приведенной выше формулы.
Тогда можно получить еще два варианта указанной формулы:
Краткое содержание В данном эксперименте Вы убедитесь, что конденсатор оказывает противодействие переменному току. Затем Вы соберете последовательную резистивно-емкостную схему, аналогичную приведенной на рисунке 20-2, подсчитаете, а потом измерите все токи и напряжения для проверки существа сказанного ранее. ПРОЦЕДУРА 1: измерение сдвига фаз Чтобы завершить данный эксперимент. Вам потребуется измерить сдвиг фаз между двумя синусоидальными сигналами. Для этого выведите два сигнала на двухканальный осциллограф. Один сигнал, верхняя осциллограмма, используйте в качестве опорного и подключите на вход канала 1 или А. Другой сигнал подведите к каналу 2 или В. После этого проделайте следующее: 1. Отрегулируйте скорость горизонтальной развертки, чтобы можно было видеть один период синусоидального сигнала. Установите непрерывную развертку в состояние калибровки CAL. 2. Измерьте период (t) синусоидальных сигналов, как описано в эксперименте 16. 3. Подсчитайте количество делений между двумя смежными или тремя последовательными положительными пиками синусоидальных сигналов. 4. Рассчитайте смещение во времени (t,) умножением количества делений на настройку скорости горизонтальной развертки. 5. Вычислите сдвиг фаз в градусах при помощи следующей формулы: 360 t1/t градусов Пример Период синусоидального сигнала равен 250 мкс. Промежуток между двумя смежными положительными пиками двух синусоидальных сигналов составляет 2,6 деления. Скорость развертки составляет 10 мкс/дел. Смещение во времени равно: t1= 2,6 х 10 = 26 микросекунд Сдвиг фаз равен: 360(26)/250 = 37,44 градуса Процедура 2: резистивно-емкостная схема 1. Соберите резистивно-емкостную схему, показанную на рисунке 20-3.
Рис. 20-3. 2. Отрегулируйте частоту генератора на 600 Гц. Установите величину размаха напряжения на выходе генератора 10В. 3. Проделайте следующие измерения как при помощи осциллографа, так и при использовании мультиметра: Осциллограф Мулътиметр Vr————В Vr=____В Vc—————В Vc=____В Объясните, почему они различны, но эквиваленты.
Нарисуйте прямоугольный треугольник напряжений. 4. Выполните следующие вычисления для схемы на рисунке 20-3. I=_____мА Z =_____ Ом 5. Выполните измерение сдвига фаз между входным напряжением и выходным напряжением. _______ градусов Опережает выходное напряжение или запаздывает по сравнению с выходным напряжением. Почему? 6. Измените входную частоту на 1000 Гц. Убедитесь, что величина размаха напряжения генератора все еще составляет 10 В. Повторите шаги 3, 4 и 5. Сделайте вывод о том, как полное сопротивление и ток варьируются в зависимости от частоты, путем сравнения с Вашими значениями, полученными в шаге 4. 7. Поменяйте местами позиции резистора и конденсатора. Повторите шаг 5. Опережает выходное напряжение или запаздывает по сравнению с выходным напряжением? ______ градусов 8. Найдите частоту, при которой R = Хc. в данной схеме. Сначала частоту вычислите. Затем, используя осциллограф и генератор звуковой частоты, выполните измерения, чтобы проверить Ваши расчеты. f=_____Гц Объясните, какую процедуру Вы использовали и почему. 9. Соберите параллельную резистивно-емкостную схему, показанную на рисунке 20-4. Вычислите ее общее активное сопротивление (Rt), общую емкость (Сt) и полное сопротивление (импеданс). Нарисуйте треугольник токов. Rt = _____ Ом Сt = _____ мкФ Z =_____ Ом
Рисунок 20-4. 10.Приложите к схеме напряжение с размахом 10 В и с частотой 200 Гц. Измерьте полный ток в схеме, используя мультиметр. Вычислите импеданс схемы (полное сопротивление). Z=_____Ом 11.Каков сдвиг фаз между полным током и приложенным напряжением? ________градусов 12.Во всех вышеприведенных шагах объясните различия между измеренными и расчетными значениями. ОБЗОРНЫЕ ВОПРОСЫ 1. При повышении частоты сигнала, приложенного к последовательной резистивно-емкостной схеме, напряжение на конденсаторе соответственно: а) увеличивается, б) уменьшается, в) остается тем же, г) падает до нуля. 2. При уменьшении емкости конденсатора в последовательной резистивно-емкостной схеме ток схемы соответственно: а) увеличивается, б) уменьшается, в) остается тем же, г) падает до нуля. 3.Напряжение на резисторе в последовательной резистивно-емкостной схеме имеет значение 3 В. Напряжение на конденсаторе имеет значение 4 В. Напряжение источника питания равно тогда: а) 1 В, б) 3,5 В, в) 5 В, г) 7 В. 4. Напряжение источника питания в последовательной резистивно-емкостной схеме имеет значение 6 В. Тогда ток в схеме имеет величину: а) 0.2 Ом, б) 2 Ом, в) 20 Ом, г) 200 Ом. 5. Напряжения на компонентах в последовательной резистивно-емкостной схеме имеют значения: Vr = 5 В и Vc = 4 В. Резистор имеет сопротивление 1,5 кОм. Частота равна 2 кГц. Какова емкость конденсатора? а) 0,018 мкФ, б) 0,047 мкФ, в) 0,066 мкФ, г) 0,075 мкФ.
ЭКСПЕРИМЕНТ Ознакомление с осциллографом
Цели
После проведения данного эксперимента Вы сможете использовать органы управления осциллографа для вывода на его дисплейный экран осциллограмм сигналов и осуществления измерений амплитуды и частоты для постоянного и перемен-ног» тока.
Необходимые принадлежности
* Осциллограф
* Мультиметр
* Генератор функций
* Источник постоянного напряжения
ВВОДНАЯ ЧАСТЬ
Осциллограф становится относительно простым в использовании прибором после первого знакомства с ним. Затруднение может вызывать лишь изучение и запоминание функции каждого из различных органов управления на передней панели. На передней панели осциллографов имеется множество ручек, лимбов, переключателей, кнопок и соединителей. Для непосвященных это кажется очень трудным. Изучите назначение каждого органа управления и проследите за его действием на дисплее. В результате Вы быстро поймете способ
его использования. Одним из лучших способов изучения функций и методов использования осциллографа является получение по возможности большего опыта во время практической работы.
Осциллограф
Используемый Вами осциллограф, по-видимому, двухканального типа (он позволяет наблюдать одновременно два отдельных сигнала). Следовательно, он имеет два входных кабеля и соединителя. Они обычно маркируются как канал 1 и 2 или А и В. Каждый кабель также имеет наименование; имеются два основных типа — прямой и аттенюаторный.
Кабели осциллографа
Кабель прямого типа является коаксиальным кабелем с двумя выводами, которые обычно имеют концевую заделку посредством зажимов типа «крокодил» для подключения к схеме. В этом кабеле могут использоваться также щуповые наконечники вместо двух зажимов типа «крокодил». В любом случае данный кабель подводит сигнал, который должен воспроизводиться на экране, напрямую (без ослабления) к осциллографу.
С аттенюаторным типом соединителя также используется коаксиальный кабель, но в общем случае применяется щуп вместо зажимов типа «крокодил». Узел щупа содержит последовательный резистор с большим сопротивлением, которое вместе с полным входным сопротивлением осциллографа формирует делитель напряжения.
Таким образом, данный щуп и кабель выполняют ослабление (аттенюацию) сигнала в 10 раз. Преимуществом такого кабеля является то, что он создает меньшую емкостную нагрузку для схем высокой частоты, позволяя визуализировать высокочастотные сигналы и сложные формы сигнала. Тем не менее, взамен имеет место потеря амплитуды сигнала, которая может обычно компенсироваться увеличением усиления осциллографа. Чтобы получить корректное измерение амплитуды сигнала, настройка осциллографа умножается на 10. Такие щупы называются щупами Х10. Измерение амплитуды Для амплитудных измерений на осциллографе используется откалиброванная сетка или координатная сетка на экране электронно-лучевой трубки для определения числа делений между максимальным положительным и минимальным отрицательным отклонениями сигнала (такое измерение называется измерением размаха или двойной амплитуды сигнала). Для измерений выполняйте следующие шаги: Шаги при измерении амплитуды 1. Установите переключатель управления коэффициентом усиления по вертикали для визуализации как можно большего размаха сигнала на координатной сетке. 2. Установите ручку непрерывного управления коэффициентом усиления по вертикали в позицию CAL (калибровка). 3. Подсчитайте количество делений и долей деления между положительным и отрицательным пиками сигнала. Используйте регулятор вертикальной позиции для перемещения осциллограммы сигнала при необходимости. Заметьте, что большая часть осциллографов имеет восемь больших вертикальных делений, разделенных на пять меньших делений. 4. Умножьте число делений на значение установки переключателя коэффициента усиления по вертикали. Вы получаете значение размаха сигнала. 5. Если Вы использовали щуп Х10, умножьте Ваше значение в шаге 4 на 10. Это даст правильное значение размаха напряжения. Пример: Коэффициент усиления по вертикали устанавливается 50 мВ/деление. Это означает, что каждое большое вертикальное деление соответствует 50 мВ. При этом каждое из пяти малых делений соответствует 50/5 = 10 мВ. Предположим, что амплитуда Вашего сигнала перекрывает 6, 3 делений.
Тогда его значение амплитуды равно 50 х 6, 3 = 315 мВ. Если использовался щуп Х10, то амплитуда сигнала равна 315 х 10 = 3150 мВ или 3, 15В. Измерение частоты Для измерений частоты (f) на осциллографе сначала измерьте период (t) сигнала. Период — это время одного цикла. Самый простой способ сделать это — подсчитать количество горизонтальных делений между двумя последовательными пиками сигнала. Для измерений выполняйте следующие шаги: Шаги при измерении частоты 1. Установите переключатель горизонтальной развертки для визуализации одного или двух периодов (циклов) сигнала. 2. Установите ручку непрерывного управления горизонтальной частотной разверткой в положение CAL (калибровка). 3. Подсчитайте количество делений между последовательными пиками сигнала. Используйте регулятор горизонтального сдвига для перемещения осциллограммы сигнала при необходимости. 4. Умножьте число делений на значение установки переключателя горизонтальной развертки. Вы получаете значение периода сигнала (t). 5. Чтобы вычислить частоту сигнала, найдите обратную величину периода: f = 1/t Пример: Переключатель горизонтальной развертки устанавливается на 20 мкс/деление. Предположим, Вы насчитали 4, 4 деления между последовательными пиками сигнала. Тогда его период (1) равен: 4, 4 х 20 = 88 микросекунд. А частота сигнала равна: f = 1/(88 х 10^-6) = 11363, 64 Гц или 11, 36 кГц ПРОЦЕДУРА 1. Рассмотрите измерительные выводы осциллографа, чтобы определить, какого они типа. Запишите эти типы: СН А (канал А. __________ СН В (канал В) __________ 2. Включите питание осциллографа при помощи переключателя на передней панели. Дайте электронно-лучевой трубке приблизительно одну минуту, чтобы прогреться: а) пока электронно-лучевая трубка прогревается, установите переключатель управления режимом развертки в положение Авто; б) установите селектор источника в положение СН 1 (канал 1) или CН А (канал А); в) установите регулятор горизонтального сдвига в среднее положение; г) регулятор вертикального сдвига предусмотрен для обоих входных каналов; установите его также в среднее положение; д) установите входной переключатель для каждого канала в положение GND (масса); е) когда осциллограф прогреется, Вы должны видеть яркую горизонтальную линию на экране осциллографа.
Поворачивайте регулятор вертикального сдвига, чтобы переместить горизонтальную линию в центр экрана. 3. След на экране должен быть ярким и четким. Если это не так, отрегулируйте его ручками фокусировки и яркости, которые обычно расположены на передней панели осциллографа. Используя регулятор фокусировки, Вы должны попробовать сделать линию размытой, а затем сфокусировать ее до четкого состояния. Попробуйте поработать регулятором яркости, который устанавливает уровень яркости линии. Не делайте линию слишком яркой, ибо в этом случае она будет слишком широкой, что снизит точность Ваших измерений. ПРИМЕЧАНИЕ: Запомните в качестве основного правила, что яркость делать надо низкой, насколько возможно, лишь бы она обеспечивала удобное наблюдение при нормальном окружающем освещении. 4. Подсоедините щуповой наконечник для канала 1 (СН 1) к небольшому соединителю на передней панели, с маркировкой CAL. Осциллограф содержит встроенный мультивибратор, который работает на частоте 1 кГц и формирует прямоугольное колебание (меандр) с размахом того или иного указанного напряжения. Этот сигнал с внутренней калибровкой позволяет Вам быстро контролировать измерения при помощи осциллографа частоты и амплитуды для корректных калибровок. CAL (калибровочное) напряжение ___ Vpp (напряжение размаха). Установите регуляторы передней панели осциллографа таким образом, чтобы регуляторы по горизонтали и вертикали были полностью выведены по часовой стрелке в позиции CAL. Затем установите частоту горизонтальной развертки при помощи переключателя TIME/DIV в положение 0. 1 мс. И, наконец, установите коэффициент усиления по вертикали при помощи переключателя VOLTS/DIV в положение 50 мВ. 5. Если Вы даже подали откалиброванный сигнал на вертикальный вход осциллографа, на его экране не появляется никакого сигнала. Причиной этого является то, что Вы предварительно должны установить входной переключатель в положение GND (масса). Это просто заземлит входную линию и даст Вам опорную позицию нуль вольт для входного сигнала.
Вы можете теперь при помощи регулятора вертикального сдвига выполнять перемещение развертки вверх и вниз, чтобы одна из горизонтальных линий на координатной сетке соответствовала положению нуль вольт. Входной переключатель установите в позицию АС (переменный ток). Сразу же Вы должны увидеть прямоугольные колебания на экране. Выполняйте регулирование при помощи регулятора вертикального и горизонтального сдвига, чтобы меандр был четко виден на экране. ПРИМЕЧАНИЕ: Когда Вы устанавливаете входной переключатель в положение АС, последовательно с входной линией включается конденсатор. На основании этого любое постоянное напряжение во входном сигнале блокируется, и на индикацию выводится только переменная составляющая сигнала. В этом случае происходит следующее. Установив линию нуля вольт на центральной горизонтальной линии, Вы заметите, что прямоугольный сигнал коммутируется выше и ниже нулевой линии. Другими словами, блокировочный конденсатор внутри осциллографа подавляет выход постоянного напряжения мультивибратора, так что на экране осциллографа появляется только переменная составляющая сигнала. 6. Далее, используйте регулятор коэффициента усиления по вертикали, чтобы варьировать амплитуду сигнала. По мере вращения регулятора Вы можете заметить, что амплитуда может изменяться в широком диапазоне. Это позволяет Вам удобно разместить сигнал на экране осциллографа для наблюдения за ним. Помните, тем не менее, что для осуществления точных измерений этот регулятор должен быть в полностью выведенном по часовой стрелке положении (CAL). лишь в этом случае обозначения напряжений на делениях регулятора коэффициента усиления по вертикали корректны. Поворачивайте регулятор горизонтальной развертки. Вы сейчас изменяете скорость развертки внутреннего генератора пилообразного напряжения. Следовательно, Вы можете наблюдать на экране осциллографа больше или меньше периодов сигнала. Таким образом, данный регулятор позволяет Вам удобно отрегулировать количество периодов для индикации. Тем не менее, для измерения периода или других временных параметров сигнала регулятор развертки должен быть в полностью выведенном по часовой стрелке положении (CAL), чтобы значения времени на делениях переключателя были корректны. 7. Установите входной переключатель в положение DC (постоянный ток) и заметьте влияние на форму сигнала.
Вам может потребоваться поработать регуляторами вертикального и/или горизонтального сдвига, чтобы снова увидеть форму сигнала. Чтобы временно локализовать и установить нулевую линию, установите входной переключатель назад в положение GND. Затем совместите линию развертки с одной из горизонтальных линий в нижней части экрана. Это опорная линия нулевого напряжения. Теперь установите входной переключатель снова в положение DC. Заметьте, что прямоугольный сигнал появляется выше нулевой линии. Это означает, что прямоугольный сигнал переключается приблизительно от нуля вольт до пикового значения. Заметьте, что когда форма сигнала разворачивается вверх от базисной нулевой линии, она представляет положительное напряжение. Если форма сигнала разворачивается вниз от базисной нулевой линии, она отражает отрицательное напряжение. 8. Измерьте амплитуду сигнала. Обеспечьте, чтобы регулятор коэффициента усиления по вертикали был полностью выведен по часовой Стрелке в положение калибровки. Подсчитайте количество вертикальных делений между основанием прямоугольного колебания и вершиной прямоугольного колебания. Например, если напряжение CAL равно 0, 25В или 250 мВ (размах), Вы должны насчитать 5 делений, когда VOLTS/DIV установлен в. положение 50 мВ. Пять делений по 50 мВ каждое дают напряжение размаха 250 мВ. Если Вы использовали аттенюаторный щуп Х10, установите регулятор коэффициента усиления по вертикали на значение 5 мВ на одно деление, затем умножьте это значение на 10, чтобы получить 250 мВ. калибровочное напряжение =________ Vpp Внутренняя схема калибратора недостаточно точна, однако сигнал на экране должен приблизительно соответствовать указанному на передней панели. 9. Измерьте частоту сигнала. Большинство калибраторов используют частоту 1 кГц, однако может использоваться и другое значение. Установите переключатель TIME/DIV в положение 1 мс. Убедитесь, что регулятор развертки находится в положении CAL. Это означает, что каждое горизонтальное деление на экране соответствует одной миллисекунде.
Вы должны суметь увидеть, что один период прямоугольного сигнала занимает до одной миллисекунды на экране. Вспомните, что один период состоит из одного развернутого в положительную сторану и одного развернутого в отрицательную сторону импульса. Установите переключатель TIME/DIV в положение 0, 1 мс. Теперь каждое деление на экране соответствует 0, 1 мс или 100 мкс. Поскольку период сигнала 1 кГц равен 1 миллисекунде, один полный период сигнала должен занимать весь экран (10 горизонтальных делений). Выполняйте перемещение при помощи регулятора горизонтального сдвига туда и сюда, чтобы Вы могли видеть, что положительный фронт импульса на левой стороне экрана начинается у дальней левой вертикальной линии, а затем положительный фронт следующего импульса начинается приблизительно у дальней правой вертикальной линии. Повторите это движение, чтобы Вы могли лучше разобраться в этом. Поскольку калибратор не является чрезмерно точным, длительность одного периода может быть несколько меньше или несколько больше, чем 10 полных делений на экране. Какова измеренная частота калибратора? частота CAL = ____ Гц 0. Пока Вы рассматриваете эту форму сигнала, установите переключатель MODE в положение NORM. Если картинка исчезает, подстраивайте регулятор порогового уровня до тех пор, пока сигнал не появится снова. Вы используете теперь функцию запускаемой развертки. Вы можете регулировать пусковой уровень или точку на форме сигнала, где сигнал запускает горизонтальную развертку. Поскольку входной сигнал представляет собой положительный импульс, запуск будет осуществляться по положительному напряжению. Варьируйте регулятором пускового уровня как в направлении по часовой стрелке, так и против часовой стрелки, замечая его влияние на форму сигнала. Установите регулятор пускового уровня таким образом, чтобы, сигнал визуализировался на экране. Вытяните ручку регулятора пускового уровня. Данный переключатель изменяет полярность при запуске. Теперь Вы заметите, что форма сигнала начинается на левой стороне экрана с разворачиванием в отрицательном направлении, а не в положительном, как раньше.
Позже, когда Вы будете выводить на экран колебания синусоидальной формы, Вы снова более подробно будете знакомиться с этой пусковой функцией. 11. Подключите кабель осциллографа к выходу генератора функций. 12. Установите генератор функций для формирования синусоидального сигнала с частотой 1 кГц. Поверните регулятор амплитуды или регулятор выходного уровня на генераторе функций до упора по часовой стрелке. Вы должны увидеть синусоидальный сигнал с частотой приблизительно 1 кГц на экране осциллографа. Если на экране ничего нет, переключатель режима MODE может находиться у Вас в положении NORM, а пусковой уровень может быть некорректно отрегулирован. Регулируйте ручкой пусковой уровень, пока на экране не появится форма сигнала. После этого отрегулируйте положения переключателя коэффициента усиления по вертикали и переключателя горизонтальной развертки таким образом, чтобы Вы могли видеть на экране несколько периодов синусоидального сигнала. Поработайте с регуляторами, пока не получите на экране удовлетворительную картинку. 13. Теперь Вы будете исследовать частотный диапазон генератора функций. На генераторе функций установите переключатель диапазонов в положение самого низкого значения и поверните регулятор частоты в крайнее положение против часовой стрелки. Установите ручку переключателя режима MODE на осциллографе в положение AUTO. Вы видите горизонтальную линию поперек экрана, перемещающуюся вверх и вниз с небольшой скоростью. Скорость небольшая потому, что частота развертки вашего осциллографа слишком быстра для Вас, чтобы визуализировать (то есть, выводить на экран) полный период синусоидального сигнала, генерируемого генератором функций на такой малой частоте. Вы можете получить представление о частоте, если подсчитаете, сколько раз нарастает и убывает синусоидальное колебание. Синусоидальному сигналу должна потребоваться приблизительно 1 секунда, чтобы пройти от самой низкой до самой высокой позиции, а затем вернуться назад. Во время наблюдения за синусоидальным сигналом начните вращать ручку регулятора частоты в направлении по часовой стрелке.
Скорость движения вверх и вниз должна возрастать. В некоторый момент Вы должны будете иметь возможность установить переключатель TIME/DIV на большее значение, и Вы будете наблюдать синусоидальный сигнал низкой частоты. Установите переключатель диапазонов на генераторе функций в положение следующего более высокого значения и заметьте эффект на экране. Частота должна сразу же возрасти до значительно большего значения, и Вы увидите уже больше периодов, визуализируемых на экране. Поверните переключатель TIME/DIV в положение большего значения, и наблюдайте за синусоидальным сигналом на экране. Варьируйте положение регулятора частоты на генераторе функции, чтобы видеть, как изменяется частота. Продолжайте этот процесс, переключая генератор функций на более высокие частоты и варьируя регулятор частоты по всему его диапазону. Этим Вы будете продолжать увеличивать частоту. При увеличении частоты синусоидальные колебания не будут больше видны, если только Вы нс растянете их при помощи переключателя горизонтальной развертки TIME/ DIV. Всякий раз, когда Вы повышаете частоту. необходимо уменьшать частоту развертки, чтобы наблюдать за формой сигнала. 14. В качестве последнего наблюдения за частотой генератора функций установите переключатель диапазонов на генераторе функций в положение максимального значения и поверните регулятор частоты R полностью выведенное по часовой стрелке положение. То, что Вы увидите, это сигнал максимальной частоты, которую может обеспечить генератор функций. Используя описанную методику установите переключатель развертки в удобное положение. После этого выполните измерение периода между смежными положительными или отрицательными пиками. Оцените время периода, затем рассчитайте частоту. Какова приблизительно максимальная выходная частота у генератора функций? Максимальная частота = ___ Гц
15. Пока Вы исследуете максимальную выходную частоту генератора функций, измерьте также амплитуду этого сигнала: а) обеспечьте, чтобы регулятор амплитуды находился в его полностью выведенном по часовой стрелке положении.
Это положение максимального выходного напряжения, которое может быть получено от генератора функций без нагрузки; б) установите на осциллографе регулятор коэффициента усиления для входного сигнала по, вертикали в полностью выведенное по часовой стрелке положение калибровки; в) переключатель VOLTS/DIV установите в удобное положение для измерения; г) используйте регулятор сдвига по вертикали для перемещения сигнала вверх и вниз таким образом, чтобы Вы смогли подсчитать количество делений между отрицательным пиком и положительным пиком сигнала; д) подсчитайте количество делений и умножьте это число на цену одного деления. Затем снова умножьте полученное значение на коэффициент 10, если Вы используете аттенюаторный щуп для измерений; е) какое максимальное выходное напряжение Вы можете получить от генератора функций? Максимальное выходное напряжение = __ В (размах) Наконец, продемонстрируйте, как уменьшить выходное напряжение сигнала с помощью регулятора амплитуды на генераторе функций в направлении против часовой стрелки. Вы должны иметь возможность понизить выходное напряжение до очень низкого уровня, однако это напряжение не опустится полностью до нуля, и при низких амплитудах форма сигнала будет несколько искажена. Однако в любом случае Вы можете варьировать формой выходного сигнала в довольно широком диапазоне. 16. Большинство генераторов функций формируют также прямоугольные сигналы и/или сигналы треугольной формы. Если Вы захотите понаблюдать за другими формами сигналов, формируемыми генератором функций, Вы можете добиться этого настройкой органов управления на передней панели. Рассмотрите сигнал треугольной формы. Какой это сигнал, АС (переменного тока. или DC (постоянного тока)? Рассмотрите сигнал прямоугольной формы. Какой это сигнал, АС (переменного тока. или ОС (постоянного тока)? Сигнал треугольной формы _________ Сигнал прямоугольной формы _______ ОБЗОРНЫЕ ВОПРОСЫ 1. Щуп х10 осциллографа: а) ослабляет входной сигнал в 10 раз, б) усиливает входной сигнал в 10 раз. 2.
Расстояние между положительным и отрицательным пиками синусоидального сигнала составляет 6, 4 делений. Регулятор коэффициента усиления по вертикали установлен на 50 мкВ/деление. Используется щуп х10. Значение размаха напряжения составляет: а) 3, 2 мкВ, б) 32 мкВ, в) 320 мкВ, г) 3, 2 мВ. 3. Расстояние по горизонтали между смежными пиками синусоидального сигнала составляет 4, 7 делений. Скорость развертки составляет 2 мкс/ деление. Частота синусоидального сигнала равна: а) 63, 5 кГц, б) 94 кГц, в) 106, 38 кГц, г) 176, 24 кГц. 4. Какая форма сигнала обычно не формируется генератором функций? а) синусоидальный сигнал, б) пилообразный сигнал, в) сигнал прямоугольной формы, г) сигнал треугольной формы. 5. Какой регулятор Вы используете для перемещения сигнала вверх и вниз по экрану? а) регулятор коэффициента усиления по горизонтали, б) регулятор коэффициента усиления по вертикали, в) регулятор горизонтального сдвига, г) регулятор вертикального сдвига.
ЭКСПЕРИМЕНТ Полосовой фильтр и режекторный фильтр
Цели
После проведения данного эксперимента Вы сможете продемонстрировать работу индуктивно-емкостного полосового фильтра и резистивно-емкостного режекторного фильтра.
Необходимые принадлежности
* Осциллограф
* Цифровой мультиметр
* Макетная панель
* Генератор функции
* Элементы:
четыре конденсатора 0,1 мкФ, один конденсатор 0,47 мкФ, одна катушка индуктивности 10 мГн, один резистор 100 Ом, четыре резистора 15 кОм.
ВВОДНАЯ ЧАСТЬ
Полосовой фильтр — это частотночувствительная схема, которая пропускает узкий диапазон. частот в окрестности центральной резонансной частоты (fr)
Все другие частоты ниже или выше узкой полосы пропускания значительно подавляются. Типичная характеристика полосового фильтра показана на рисунке 24-1А.
Рис. 24-1.
Режекторный фильтр представляет собой противоположность полосовому фильтру. Он подавляет или устраняет сигналы, частоты которых попадают в узкий диапазон с центральной частотой fc. Все частоты выше и ниже центральной частоты фильтр пропускает с минимальным ослаблением (см. рис. 24-1 В). Режекторный фильтр иногда называют вырезающим фильтром, поскольку этот фильтр используется для вырезания или режекции мешающего сигнала одной частоты.
Краткое содержание
Имеется несколько различных способов схемной реализации полосового фильтра и режекторного фильтра. Индуктивно-емкостные резонансные схемы могут комбинироваться различными методами для создания обоих типов фильтров. В данном эксперименте Вы познакомитесь с полосовым фильтром.
Режекторный фильтр может быть реализован и на базе индуктивно-емкостных схем. Однако в данном эксперименте Вы познакомитесь с популярным и широко используемым двойным Т-образным мостовым фильтром. Это резистивно-емкостной режекторный фильтр, способный подавлять определенную частоту и частоты в ее окрестности. Центральная частота рассчитывается при помощи следующей формулы:
fp = 1/2*3.14RC
Поскольку у Вас нет удобных средств для точного измерения частоты, Вы будете просто варьировать частоту, генерируемую генератором функций, и отмечать при помощи мультиметра выходную характеристику фильтра.
Таким образом, можно увидеть, как выходное напряжение изменяется в зависимости от частоты как в случае полосового фильтра, так и в случае режекторного фильтра. ПРОЦЕДУРА 1. Обратитесь к рисунку 24-2. Соберите эту схему полосового фильтра на Вашей макетной панели. Выходное напряжение генератора функций прикладывается к конденсаторам, тогда как выходное напряжение фильтра снимается с резистора 1000м. Заметьте, что общая емкость схемы составлена из двух конденсаторов с емкостью 0,47 мкФ и 0,1 мкФ. 2. Используя значения, показанные на рисунке 24-2, рассчитайте общую емкость схемы и резонансную частоту данной схемы.
Рис. 24-2. Сt = _______ мкФ fr=_____Гц 3. Установите регулятором амплитуды генератора функций выходное напряжение размаха 4 В: Затем установите частоту приблизительно 500 Гц. 4. Подключите осциллограф параллельно выходному резистору 1000м. Медленно увеличивайте частоту на выходе генератора функций и наблюдайте за изменением выходного напряжения схемы. Замечайте вариацию этого напряжения. Изменения частоты выполняйте медленно, чтобы Вы могли получать хорошую индикацию того, как изменяется напряжение, когда частота увеличивается или понижается. Увеличивайте частоту приблизительно до 5 кГц. 5. Регулируйте частоту, наблюдая за выходом фильтра. Настройте генератор функций на пиковое выходное напряжение. Заметьте по генератору функций или измерьте период и частоту при помощи осциллокрафа. f=____Гц 6. Объясните изменения, которые Вы наблюдали в шагах 4 и 5. 7.Демонтируйте .полосовой фильтр. Вместо него соберите схему двойного Т-образного мостового фильтра, который показан на рисунке 24-3. Будьте внимательны при монтаже схеме, поскольку она несколько сложна, и легко можно сделать ошибку во время монтажа.
Рис. 24-3. Имеется несколько-важных моментов, которые Вы должны принять во внимание при монтаже данной схемы. Во-первых, значение одного (общего) конденсатора получается комбинированием емкостей двух параллельных конденсаторов 0,1 мкФ. Вспомните, что емкости параллельных конденсаторов складываются, образуя, следовательно.
один конденсатор емкостью 0,2 мкФ. Другое значение в данной схеме получается соединением двух параллельных резисторов. Два параллельных резистора с одинаковым сопротивлением имеют общее сопротивление, равное половине сопротивления одного из резисторов. В данном случае два резистора 15 кОм соединены параллельно, чтобы получить сопротивление 7,5 кОм. 8. Используя значения, показанные на рисунке 24-3, рассчитайте частоту режекции или центральную частоту данного фильтра. fc=_____Гц 9. Настройте генератор функций на частоту 10 Гц и размах напряжения 4В. Подключите осциллограф на выход фильтра. Увеличивайте теперь выходную частоту приблизительно до 1000 Гц и наблюдайте за вариацией выходного напряжения фильтра. Повторяйте это несколько раз, чтобы Вы могли наверняка увидеть эффект. 10.Настройте генератор функций на нулевую частоту (минимальное напряжение). Измерьте частоту и запишите. f=_____Гц 11.Объясните полученные Вами результаты в шагах 9 и 10. ОБЗОРНЫЕ ВОПРОСЫ 1. Режекторный фильтр может быть реализован на базе индуктивно-емкостных схем: а) высказывание истинно, б) высказывание ложно. 2. В индуктивно-емкостном полосовом фильтре центральная частота определяется значениями: а) приложенного напряжения, б) L и R, в) R и С, г) L и С. 3. Полосовой фильтр пропускает: а) одну частоту, б) только высокие частоты, в) узкую полосу частот, г) все частоты. 4. Двойной Т-образный мостовой фильтр представляет собой: а) полосовой фильтр, б) фильтр нижних частот, в) фильтр верхних частот, г) режекторный фильтр. 5. Какова центральная частота двойного Т-образного мостового фильтра при значениях R = 10 кОм и С = 0,47 мкФ? а) 34 Гц, б) 47 Гц, в) 68 Гц, г) 120 Гц.
ЭКСПЕРИМЕНТ Работа трансформатора
Цели
После проведения данного эксперимента Вы сможете объяснить работу трансформатора в схеме переменного тока и рассчитать значения коэффициента трансформации.
Необходимые принадлежности
* Двухканальный осциллограф
* Цифровой мультиметр
* Силовой трансформатор
* Генератор, функций / сигнал-генератор
* Элементы:
резистор 100 Ом, резистор 1 кОм.
ВВОДНАЯ ЧАСТЬ
Трансформатор — это электронный компонент с одной или несколькими проволочными обмотками обычно на стальном сердечнике или на каркасе. Трансформатор имеет назначение передавать электрическую энергию из одной схемы в другую посредством магнитного поля. Трансформаторы используются для повышения или понижения напряжения, а также для согласования полного сопротивления.
Схема трансформатора
На рисунке 19-1 представлена типичная принципиальная схема трансформатора. Когда переменное напряжение полается на левую на схеме (первичную) обмотку, в ней протекает ток. Ток создает переменное магнитное поле, которое пересекает витки правой на схеме (вторичной) обмотки. Хотя физический контакт между двумя этими обмотками отсутствует, магнитное поле индуцирует (наводит) напряжение во вторичной обмотке. Это напряжение может использоваться затем для питания другой схемы или цепи.
Рис. 19-1.
Величина напряжения, индуцируемого во вторичной обмотке, зависит от количества витков в каждой обмотке. Отношение количества витков во вторичной обмотке (Ns) к количеству витков в первичной обмотке (Np) называется коэффициентом трансформации и выражается математически следующим образом:
Коэффициент трансформации = N = Ns/Np
Определение напряжения
Вы можете определить величину напряжения, создаваемого во вторичной обмотке (Vs), простым
умножением напряжения, подводимого к первичной обмотке (Vp), на коэффициент трансформации. Эта формула такова:
Vs=Vp(Ns/Np)
Если коэффициент трансформации больше 1, напряжение на вторичной обмотке будет больше, чем напряжение на первичной обмотке: повышающий трансформатор. Если коэффициент трансформации меньше 1, напряжение на вторичной обмотке будет меньше, чем напряжение на первичной обмотке: понижающий трансформатор.
Коэффициент трансформации и напряжения на обмотках связаны следующим образом: N= Ns/Np =Vs/Vp Определение токов. в первичной и вторичной обмотках Поскольку подводимая мощность трансформатора почти одинаковое выходной мощностью, коэффициент трансформации может быть использован также для определения токов первичной и вторичной обмоток трансформатора (Iр и Is). Здесь имеет место обратная зависимость, как показывает следующее выражение: Ip/Is=Ns/Np, Соединения трансформаторной обмотки могут бытъ такими, что выходное напряжение будет в фазе с входным напряжением или различаться по фазе на 180° с ним. Фаза может быть; изменена простым обращением соединений с одной обмоткой. Если соединения трансформатора выполнены таким образом, чтобы формировать сдвиг по фазе на 180°, говорят, что напряжение на вторичной обмотке этого трансформатора инвертировано. Некоторые трансформаторы имеют отводы от обмотки, чтобы обеспечить несколько выходных напряжении. Обычным соединением является отвод от средней точки (СТ) вторичной обмотки, который обеспечивает формирование двух напряжений, равных половине полного напряжения на вторичной обмотке (см. рис. 19-1). Краткое содержание В данном эксперименте Вы познакомитесь с работой трансформатора. Вы научитесь также измерять напряжения трансформатора и рассчитывать коэффициент трансформации. ПРОЦЕДУРА 1. Подключите первичную обмотку (черные выводы) трансформатора к выходу сигнал-генератора. Подайте синусоидальное напряжение 100 Гц. Установите величину напряжения на первичной обмотке 10Vpp. Контролируйте сигнал на экране осциллографа. 2. Обратите внимание на три других вывода трансформатора. Два из них имеют один и тот же цвет, обычно желтый или красный. Это выводы от вторичной обмотки. Третий провод имеет другой цвет, обычно синий, и представляет собой отвод от средней точки обмотки. ПРИМЕЧАНИЕ: Концы проводов, по-видимому, неизолированы, так что будьте осторожны, чтобы концы не касались друг друга, в противном случае может иметь место короткое замыкание. Если выводы вторичной обмотки изолированы, снимите приблизительно 1/2 дюйма изоляции с каждого конца. 3.
Включите сигнал-генератор. Используя Ваш мультиметр, измерьте переменное напряжение, создаваемое на двух желтых или красных выводах вторичной обмотки. Не прикасайтесь к выводам при выполнении этого подключения. Запишите полученное напряжение; Напряжение на вторичной обмотке (Vs)= ________ В 4. При выполнении Ваших измерений измерьте напряжение между синим выводом и каждым из желтых выводов. Запишите эти значения: Напряжение между синим выводом и первым желтым выводом = __________ В Напряжение между синим выводом и,вторым желтым выводом ==_____ Б 5. Используя полученные Вами в шагах 1 и 3 данные, рассчитайте коэффициент трансформации данного трансформатора,а также токи в первичной и вторичной обмотках. Предполагайте, что нагрузка во вторичной обмотке составляет 100 Ом. Коэффициент трансформации =______ Ip=_____ Is=——————— Какой это трансформатор, повышающий или понижающий? 6. Подключите к выводам вторичной обмотки резистор 1000м. Снова измерьте напряжение на вторичной обмотке. Vs=______В 7. Подключите мультиметр последовательно с вторичной обмоткой. Измерьте ток. 1s = _______ мА 8. Рассчитайте ток в первичной обмотке. 1р = ___ мА 9. Измерьте ток в первичной обмотке. Ip= _______ мА 10.Покажите на экране двухканального осциллографа напряжение на первичной обмотке и напряжение на вторичной обмотке. Какова фазовая зависимость между напряжением на первичной обмотке и напряжением на вторичной обмотке? 11 Обратите (реверсируйте) соединения вторичной обмотки. Какова теперь фазовая зависимость между напряжением на первичной обмотке и напряжением на вторичной обмотке? 12.Отключите резистор 1000м. Реверсируйте первичную и вторичную обмотки. Используйте желтые или красные выводы в качестве выводов первичной обмотки и подключите их к сигнал-генератору. Подключите резистор 1 кОм к вторичной обмотке (теперь это черные выводы). 13.Установите сигнал-генератор на формирование напряжения с размахом 1'2 В на первичной обмотке. Измерьте напряжение на вторичной обмотке: Vs=_______В Какой это трансформатор, повышающий или понижающий? 14.Рассчитайте коэффициент трансформации, а также токи в первичной и вторичной обмотках. N =______ Ip=______ Is=_______ 15.Подключите мультиметр последовательно с нагрузкой 1 кОм.
Измерьте ток во вторичной обмотке. Is=_______ мА 16.Измерьте ток в первичной обмотке. 1р = _______ мА ОБЗОРНЫЕ ВОПРОСЫ 1. Трансформатор имеет 1600 витков во вторичной и 500 витков в первичной обмотке. Какого типа этот трансформатор? а) повышающий, б) понижающий. 2. Если к первичной обмотке трансформатора, описанного в шаге 6 процедуры, прикладывается напряжение 120 В, каким будет напряжение на вторичной обмотке? а) 37,5 В, б) 120 В, в)384 В, г) 462 В. 3. В данном эксперименте, если к вторичной обмотке трансформатора в шаге 6 прикладывается напряжение 120 В, какое напряжение Вы измерите в таком случае на первичной обмотке? а) 14 В. б) 120 В, в) 134 В, г) 1028 В. 4. Переменное напряжение 240В прикладывается к первичной обмотке трансформатора. Напряжение на вторичной обмотке составляет 48 В. Тогда коэффициент трансформации равен: а) 0,12; 6)0,2; в) 1,8; г) 5. 5. Если трансформатор из вопроса 4 имеет отвод от средней точки, каково напряжение на одной половине вторичной обмотки? а) 24 В, б) 48 В, в) 240 В, г) 600 В.
ЭКСПЕРИМЕНТ Резистивно-индуктивно-емкостные схемы
Цели
После проведения данного эксперимента Вы сможете рассчитывать и измерять все токи, напряжения и полные сопротивления в последовательных LCR-схемах (резистивно-индуктивно-емкостных схемах).
Необходимые принадлежности
* Осциллограф
* Цифровой мультиметр
* Макетная панель
* Генератор функции
* Источник постоянного напряжения
* Элементы:
одна катушка индуктивности 100 мГн, один конденсатор 0,1 мкФ, один резистор 4700м.
ВВОДНАЯ ЧАСТЬ
Резистивно-индуктивно-емкостная схема (называемая также LCR-схемой или RLC-схемои) скомбинирована из сопротивления, индуктивности и емкости. Всякий раз, когда катушки и конденсаторы комбинируются в схеме переменного тока,. их реактивные сопротивления гасят друг друга.
Вспомните: катушка индуктивности приводит к запаздыванию тока по отношению к приложенному напряжению на 90 градусов; тогда как конденсатор приводит к тому, что ток опережает напряжение на 90 градусов.
Как результат этого катушка индуктивности аннулирует действие конденсатора, так как их действия противоположны. Аналогично в последовательной схеме, состоящей из индуктивности и емкости, компонент с большей величиной реактивного сопротивления подавляет меньшее реактивное сопротивление.
Рис. 21-1.
Пример. В схеме на рисунке 21-1 катушка индуктивности имеет индуктивное сопротивление 100 Ом, а конденсатор имеет емкостное сопротивление 750м, поэтому емкостное сопротивление аннулируется полностью, и поведение схемы будет таким, как будто она обладает общим индуктивным сопротивлением 100 — 75 = 25 Ом. Это
комбинированное общее (эффективное) реактивное сопротивление и используется при расчете полного сопротивления схемы. Поведение схемы имеет индуктивный характер, поскольку XL, больше, чем Хc.
Определение полного сопротивления
Для получения полного сопротивления последовательной резистивно-индуктивно-емкостной схемы используется приведенная ниже формула:
Следовательно, имеем:
После того, как Вы узнаете полное сопротивление схемы, можно, естественно, рассчитать ток в схеме при помощи закона Ома, в предположении, что известно напряжение источника питания (Vs).
Это выполняется при использовании; следующего выражения с подстановкой найденных выше значений: I=V/Z
I = 100/55,9 = 1,79 А После этого, зная, что ток в каждом компоненте один и тот же, Вы можете определить падения напряжения на каждом, компоненте. Это снова осуществляется при помощи закона Ома и следующих формул: Vс = IR = 1,79(50) = 89,5 В
Vс = IXL = 1,79(100) = 179 В
VL= IXc =1,79(75) = 134,25 В Как и в любой последовательной схеме, значения напряжений распределяются пропорционально значениям активного сопротивления и реактивных сопротивлений: на реактивных сопротивлениях большей величины падают напряжения большей величины. Не забывайте только, что вследствие сдвига фазы, обусловленного типом схемы. Вы не можете попросту складывать непосредственно падения напряжений на компонентах, чтобы получить общее напряжение источника питания. Необходимо при этом выполнять сложение векторных величин. На рисунке 21-2 показано, как это делается при использовании данных предыдущего примера.
Рис. 21-2. Краткое содержание В данном эксперименте Вы соберете последовательную резистивно-индуктивно-емкостную схему и сделаете все вычисления, необходимые для расчета схемы. После этого Вы выполните измерения для проверки Ваших расчетов. ПРОЦЕДУРА 1.Измерьте активное сопротивление катушки индуктивности 100 мГн при помощи вашего мультиметра. RL =_____Ом 2. Соберите схему, показанную на рисунке 21-3. Отрегулируйте частоту генератора на 1 кГц и установите величину размаха напряжения на выходе генератора 4 В.
Рис. 21-3. 3. Измерьте Vr, Vl, Vc и Q и запишите полученные значения в таблицу. Напомним, что 9 означает сдвиг фазы тока или V по отношению к приложенному напряжению Vs. 4. Используя табличные данные, вычислите I и Z и запишите их в таблицу. Определите характер схемы (индуктивная или емкостная схема) и отметьте в таблице.
5. Увеличьте частоту генератора до 2 кГц. Сохраняйте величину размаха генератора равной 4 В. 6. Повторите шаги 3 и 4 при этой более высокой частоте. Запишите Ваши данные в таблицу. 7.
Нарисуйте эквивалентные схемы для частоты I кГц и частоты 2 кГц и укажите эквивалентные значения реактивных компонентов в мкФ или в мкГн, как это необходимо. 8. Рассчитайте фактическую мощность (Р), рассеиваемую схемой при каждой частоте, и запишите эти значения в таблицу. Назовите компоненты, которые рассеивают мощность, и сделайте пояснения. ОБЗОРНЫЕ ВОПРОСЫ I. Резистивно-индуктивно-емкостная схема имеет следующие компоненты: XL = 30 Ом, Хc = 42 Ом, R = 150м. Схема в общем является: а) индуктивной, XL = 12 Ом, б) индуктивной, ХL= 72 Ом, в) емкостной, Хc= 72 Ом, г) емкостной, Хc = 12 Ом. 2. В схеме, описанной в вопросе 1, наименьшее падение напряжения на: а) резисторе, б) катушке индуктивности, в) конденсаторе. 3. Каково полное сопротивление (импеданс) схемы, описанной в вопросе I? а) 15 Ом, б) 19,2 Ом, в) 72 Ом, г) 87,5 Ом. 4. Последовательная резистивно-индуктивно-емкостная схема имеет индуктивный характер, если: а) Хc > XL, б) Хc > VL в) VL > Vc, r)XL<Xc. 5. Конденсатор 0,02 мкФ и конденсатор 0,047 мкФ соединены параллельно. Общая эквивалентная емкость равна: а) 0,0094 мкФ, 6)0,014 мкФ, в) 0,0335 мкФ, г) 0,067 мкФ.
ЭКСПЕРИМЕНТ Резонанс
Цели
После проведения данного эксперимента Вы сможете рассчитывать резонансную частоту резистивно-индуктивно-емкостной схемы и выполнять измерения в схеме для определения существования условия резонанса в схеме.
Необходимые принадлежности
* Осциллограф
* Цифровой мультиметр
* Макетная панель
* Генератор функций
* Элементы:
одна катушка индуктивности 10 мГн, один конденсатор 0, 22 мкФ, один конденсатор 0, 47 мкФ, один резистор 100 Ом.
ВВОДНАЯ ЧАСТЬ
Резонанс — это такое состояние резистивно-индуктивно-емкостной схемы, когда индуктивное сопротивление и емкостное сопротивление одинаковы. Поскольку эти реактивные сопротивления одинаковы, они полностью компенсируют друг друга. • При резонансе имеют место многие специальные эффекты. Например, в силу того, что реактивные
сопротивления полностью гасят друг друга, схема проявляет себя как полностью резистивная.
Вы сможете обнаружить резонансные схемы почти во всех типах электронного оборудования. Они широко используются для выполнения различных задач настройки и фильтрации в электронном оборудовании. В данном эксперименте Вы рассмотрите эффект резонанса как в параллельных, так и в последовательных схемах.
Последовательный резонансный контур
Последовательный резонансный контур представлен на рисунке 22-1. Вспомните, что при наличии резонанса в схеме индуктивное сопротивление и емкостное сопротивление полностью компенсируют друг друга, и сопротивление току оказывает одно лишь активное сопротивление схемы. В такой схеме полное сопротивление попросту равно значению R плюс сопротивление постоянному току катушки. Главной характеристикой последовательного резонансного контура является то, что его полное сопротивление минимально при резонансе. При настройке частоты на величину, превышающую или лежащую ниже резонансной частоты, полное сопротивление возрастает.
Поскольку при резонансе в последовательном резонансном контуре полное сопротивление минимально, ток в контуре возрастает до пиковой величины. Эта большая величина тока при ее умножении на индуктивное сопротивление и на емкостное сопротивление дает очень высокие падения напряжения на катушке индуктивности и на конденсаторе.
В действительности падения напряжения на катушке индуктивности и на конденсаторе в условиях резонанса часто значительно превышают напряжение питания. Эти необычайно высокие при резонансе напряжения называются скачками напряжения при резонансе или резонансными повышениями напряжения.
Рис. 22-1. Параллельный резонансный контур Параллельный резонансный контур представлен на рисунке 22-2. Конденсатор и катушка индуктивности соединяются параллельно друг с другом, и вся комбинация иногда соединяется последовательно с резистором. Поскольку при резонансе индуктивное сопротивление и емкостное сопротивление полностью компенсируют друг друга, схема обнаруживает очень значительное активное сопротивление. В такой схеме полное сопротивление параллельного индуктивно-емкостного контура возрастает до многих тысяч Ом при резонансе. При частотах, превышающих или лежащих ниже резонансной частоты, полное сопротивление уменьшается.
Рис. 22-2. Если Вы измерите линейный ток в резисторе, соединенном последовательно с параллельным резонансным контуром, Вы обнаружите, что ток достигает минимума в условиях резонанса. Это происходит вследствие того, что при резонансе полное сопротивление максимально,и,следовательно, это приводит к формированию минимальной величины тока через контур. При изменении частоты в любую сторону от резонансной частоты полное сопротивление контура уменьшается, и линейный ток возрастает. Полное сопротивление параллельного резонансного контура вычисляется на основании следующей формулы: Z=L/CR В этой формуле: R — сопротивление катушки индуктивности L. Например, если L = 2 мГн, С = 0,05 мкФ и R = 5 Ом, полное сопротивлений Z равно: ' Z = 2 х 10^-3 / (0,05 х 10 ^-6)(5) Z = 8000 Ом Вы можете также использовать такую формулу: Z = Rw(Q^2 + 1) где: Rw— это сопротивление обмотки катушки индуктивности и Q = Xl/Rw. Краткое содержание Как было указано ранее, в данном эксперименте Вы соберете последовательный резонансный контур и параллельный резонансный контур, а также познакомитесь с некоторыми из упомянутых эффектов.
Вы практически рассчитаете резонансную частоту (fг ) при заданных значениях индуктивности и емкости. Это осуществляется при помощи следующей формулы: fr = 1 / 2*3.14(LC)^0.5 ПРОЦЕДУРА 1. Обратитесь к рисунку 22-3. Рассчитайте резонансную частоту при заданных значениях, показанных на рисунке.
Рис. 22-3. fr=______Гц 2. Прежде чем собирать схему, измерьте сопротивление катушки индуктивности. Это сопротивление оказывает влияние на полное сопротивление схемы. Активное сопротивление катушки индуктивности = ____ Ом ПРИМЕЧАНИЕ: Данные, полученные в шагах 3—11, должны заноситься в таблицу на рисунке 22-4, как указано ниже. 3. Вычислите полное сопротивление схемы при резонансе. Запишите Ваш результат.
Рис. 22-4. 4. Далее вычислите полный ток схемы. Запишите его величину. 5. Зная частоту входного сигнала, определите значения индуктивного и емкостного сопротивления. Используя резонансную частоту, которую Вы рассчитали в шаге 1, вычислите определите значения индуктивного и емкостного сопротивления при резонансе. Запишите Ваши результаты. 6. Теперь вычислите падения напряжения на каждом из компонентов схемы на базе значений, полученных в шаге 5. Запишите Ваши результаты. 7. Соберите схему, показанную на рисунке 22-3. При помощи регулятора амплитуды на генераторе функций сформируйте значение размаха напряжения 4 В. 8. При помощи осциллографа осуществляйте мониторинг (текущий контроль) напряжения на резисторе 1000м. Во время мониторинга напряжения добейтесь максимального значения напряжения настройкой регулятора частоты на генераторе функций. Выполняйте Ваши настройки медленно и позволяйте показаниям мультиметра установиться, прежде чем переходить к каждой новой настройке. ПРИМЕЧАНИЕ: настройка на максимальное значение — процесс очень медленный и утомительный, потратьте однако Ваше время, чтобы получить наиболее точные результаты. Продолжайте настройку до тех пор, пока Вы не получите это максимальное напряжение. В результате Вы получили настройку генератора функций на резонансную частоту схемы.
Объясните, почему данная процедура используется для нахождения fr . 9. Выполните повторный контроль, чтобы убедиться, что размах выходного напряжения генератора функций составляет 4 В. Если необходимо, снова отрегулируйте выходное напряжение на это значение и повторите при этом шаг 8. 10.После того, как схема настроена в режим резонанса, измерьте падения напряжения на каждом из компонентов. Запишите их значения. 11.Сделайте разрыв в схеме в том месте, где конденсатор 0,22 мкФ соединяется с катушкой, как Вы это делали в предыдущем эксперименте. Это позволит Вам включить в схему мультиметр для измерения тока в схеме. Переключите Ваш мультиметр для измерения переменного тока. Установите предел измерения 2 мА. Измерьте ток в схеме и запишите Ваш результат. 12. Теперь сравните Ваши расчетные и измеренные значения. Они должны быть одинаковыми или, по крайней мере, очень близкими. Объясните возможные различия. 13. В процессе измерения тока в последовательном резонансном контуре варьируйте выход генератора функций при помощи регулятора частоты. Поворачивайте ручку медленно против часовой стрелки для уменьшения частоты и замечайте влияние на величину тока. Регулировка частоты должна выполняться настолько медленно, чтобы Вы могли наблюдать за изменениями показания мультиметра, так как требуется несколько секунд, чтобы показания установились после каждого нового изменения частоты. Далее поворачивайте ручку медленно в направлении по часовой стрелке для увеличения частоты и снова замечайте влияние на величину тока. При изменении частоты выше или ниже резонансной частоты Вы обнаружите значительные вариации тока. Во время наблюдения за этими вариациями определяйте сразу, каким образом частота влияет на ток схемы. 14. Снова соедините катушку и конденсатор 0, 22 мкФ. 15. Присоедините измерительные выводы осциллографа к конденсатору и к катушке индуктивности одновременно. Варьируйте частоту при. помощи регулятора частоты на генераторе функций, чтобы получить минимальный уровень напряжения.
Когда будет достигнуто минимально возможное напряжение, схема настроена в резонанс. Заметьте положение указателя, регулятора частоты на генераторе функций. Объясните, что Вы здесь получили; 16. Удалите конденсатор 0, 22 мкФ из макетной панели и на его место установите конденсатор 0, 47 мкФ. Вычислите резонансную частоту этой новой комбинации. fr=____Гц При увеличении емкости в схеме до 0,47 мкФ резонансная частота: _________ увеличивается _________ уменьшается 17.Снова присоедините измерительные выводы осциллографа к комбинации конденсатора и катушки индуктивности. Варьируйте частоту при помощи регулятора частоты на генераторе функций, чтобы получить минимальный уровень напряжения. Когда будет достигнуто минимальное напряжение, заметьте то направление, в котором Вы повернули регулятор генератора функций. Частота в данном случае выше или ниже, чем раньше? _________ выше _________ ниже Соответствует это результатам, которые предсказаны Вами в шаге 16? 18.Соберите параллельный резонансный контур, схема которого представлена на рисунке 22-5. Заметьте, что два конденсатора включены последовательно и их комбинация соединена параллельно с катушкой индуктивности. Это соединение образует параллельный резонансный контур, в котором два последовательно включенных конденсатора имеют единственное эквивалентное значение емкости. Затем параллельный резонансный контур соединен последовательно с резистором 1 кОм, и вся полученная комбинация подключена к генератору функций.
Рис. 22-5. 19. Вычислите резонансную частоту данной схемы. Индуктивность известна, но Вам требуется вычислить полную емкость схемы (Ст). Вспоминая, что Вы узнали ранее о последовательном включении конденсаторов, вычислите сначала полную емкость схемы. Запишите это значение. После этого вычислите резонансную частоту данной схемы и запишите Ваш результат в предусмотренное поле. Ст = _______ мкФ fr=_______Гц 20.Используя формулу, приведенную ранее для полного сопротивления параллельного резонансного контура, найдите это полное сопротивление.
Используйте значение сопротивления катушки, которое Вы измерили в шаге 2. Z =_______ Ом 21.Подайте на вход схемы синусоидальный сигнал с частотой 3 кГц. При помощи регулятора амплитуды на генераторе функций сформируйте значение размаха напряжения 4 В. 22.Осуществляйте мониторинг напряжения на резисторе 1 кОм при помощи осциллографа. Затем, варьируя частоту при помощи ручки регулятора частоты на генераторе функций, добейтесь минимального напряжения. Как и раньше, делайте это медленно и шагами. Слегка измените частоту и заметьте новое показание напряжения после того, как оно стабилизируется. Продолжайте настройку вперед и назад, пока Вы не добьетесь такой частоты, при которой напряжение минимально. Вы получили при этом резонансную частоту. Запишите в этот момент величину напряжения, которое Вы измерили на резисторе 1 кОм. Vr=_______В 23. Зная значение величины напряжения на резисторе с известным сопротивлением, Вы можете теперь вычислить величину полного тока схемы, используя закон Ома. Сделайте теперь вычисление и запишите значение величины тока. I =_______ мА 24.Далее измерьте падение напряжения на параллельном резонансном контуре. Самый простой способ сделать эти — просто прикоснуться испытательными выводами параллельно катушке индуктивности. VLc=_______В 25.Зная значение величины напряжения на параллельном резонансном контуре и ток, который Вы нашли вычислением в предыдущем шаге, Вы можете теперь вычислить величину полного сопротивления индуктивно-емкостного контура. Сделайте теперь это вычисление и запишите Ваш результат. Z=_______Ом Как это значение соответствует значению, которое Вы нашли в шаге 20? 26.Сложите падение напряжения на резисторе 1 кОм и падение напряжения на параллельном резонансном контуре. Равна ли приблизительно эта сумма величине напряжения источника? Объясните Ваш ответ. 27.Соедините измерительные выводы вашего осциллографа с параллельным контуром, прикасаясь ими к двум выводам катушки индуктивности. Вращайте ручку регулятора частоты на генераторе функций в одну и в другую сторону от резонансной частоты и следите за изменением выходного напряжения.
Ручку поворачивайте медленно из полностью выведенного в направлении против часовой стрелки положения в полностью выведенное в направлении по часовой стрелке положения, а затем назад, и так несколько раз, чтобы заметить эффект. Объясните вариации напряжения, которые Вы наблюдаете. 28.Выключите генератор функции, но схему пока не разбирайте. ОБЗОРНЫЕ ВОПРОСЫ 1. Если конденсаторы 0,22 мкф и 0,47 мкФ подключены параллельно к катушке индуктивности 10 мГн, резонансная частота контура составляет: а)1158 Гц, б)1406 Гц, в) 1917 Гц, г) 2323 Гц. 2. Резонанс в последовательном контуре обнаруживается по: а) максимальному току, б) максимальному полному сопротивлению, в) минимальному току, г) нулевому току. 3. При резонансе параллельный резонансный контур ведет себя как: а) резистор с малым сопротивлением, б) резистор с большим сопротивлением, в) катушка индуктивности, г) конденсатор. 4. Каково полное сопротивление параллельного резонансного контура с L = 5 мГн, С == 0,001 мкФ и R =40м? а) 84 кОм, б) 125 кОм, в) 840 кОм, г) 1,25 МОм. 5. При резонансе в последовательной резистивно-индуктивно-емкостной схеме полное сопротивление равно: а) XL или Xc б) сопротивлению катушки индуктивности, в) XL + Xc, г) сопротивлению катушки индуктивности плюс сопротивление резистора.
Ознакомление с осциллографом
Измерения синусоидальных сигналов Катушки индуктивности и переменный ток Работа трансформатора Конденсаторы и переменный ток Резистивно-индуктивно-емкостные схемы Резонанс Фильтры нижних и верхних частот Полосовой фильтр и режекторный фильтр
ТАБЛИЦА ЗНАЧЕНИЙ ЦВЕТОВОГО КОДА
ТАБЛИЦА ЗНАЧЕНИЙ ЦВЕТОВОГО КОДА (ДЛЯ РЕЗИСТОРОВ И КОНДЕНСАТОРОВ)
Цвет полоски | Значение представляемое цветом | Десятичный множитель | Процент допуска | Номинальное напряжение | % изменений на 1000 операций в тяж.режиме |
Черный | 0 | 1 — | — | — | — |
Коричневый | 1 | 10 | 1 * | 100 * | 1 % |
Красный | 2 | 100 | 2 * | 200 * | 0.1 % |
Оранжевый | 3 | 1000 | 3 * | 300 * | 0.01 % |
Желтый | 4 | 10000 | 4 * | 400 * | 0.001 % |
Зеленый | 5 | 100000 | 5* | 500 * | — |
Синий | 6 | 1000000 | 6 * | 600 * | — |
Фиолетовый | 7 | 10000000 | 7 * | 700 * | — |
Серый | 8 | 100000000 | 8 * | 800* | — |
Белый | 9 | 1000000000 | 9 * | 900 * | — |
Золотой | — | 0.1 | 5 | 1000 * | — |
Серебряный | — | 0.01 | 10 | 2000 * | — |
Без цвета | — | — | 20 | 500 * | — |
(*Может применяться только к конденсаторам.)
Что представляет собой светильник?
Основными конструктивными элементами светильников являются: устройство крепления светильника, источник света, устройство подведения электрического напряжения (патрон), отражатель, рассеиватель.
Промышленностью выпускаются светильники для различных источников света: ламп накаливания, газоразрядных ламп, люминесцентных трубчатых ламп и др. Светильники для газоразрядных ламп (низкого и высокого давления) комплектуются пускорегулирующей аппаратурой (ПРА).
По способу крепления светильники подразделяются на подвесные, потолочные, встроенные в потолок, настенные, напольные (торшеры), настольные и др.
Установка светильников в помещении производится в зависимости от условий окружающей среды. Для предохранения источника света от воздействий окружающей среды светильники выполняются различного исполнения по степени защиты.
По степени защиты от взрыва светильники бывают взрывобезопасные (В) и повышенной надежности против взрыва (Н).
По назначению светильники различают: для производственных помещений, для общественных зданий, для наружного освещения, для бытовых помещений.
В соответствии с ГОСТ 13677-82 каждому светильнику присваивается шифр (условное обозначение). Структура обозначения следующая:
где 1—буква, обозначающая источник света (Н— лампа накаливания общего назначения. И—кварцевые галогенные лампы накаливания, Л—прямые трубчатые люминесцентные лампы, Ф—фигурные люминесцентные лампы, Р—ртутные лампы типа ДРЛ, Г—ртутные лампы типа ДРИ, Ж—натриевые лампы. Б—бактерицидные лампы, К—ксеноновые трубчатые лампы и т. д.); 2—буква, обозначающая способ установки светильника (С—подвесные, П—потолочные, Б—настенные, Т—напольные и венчающие, В—встраиваемые, К—консольные, Р—ручные сетевые, Ф—ручные аккумуляторные и т. д.); 3—буква, обозначающая основные назначения светильников (П—для промышленных предприятий, Р—для рудников и шахт, О—для общественных зданий. Б—для жилых (бытовых) помещений. У—для наружного освещения); 4—двухзначное число (01—99), обозначающее номер серии; 5—цифра (цифры), обозначающая количество ламп в светильнике; б—цифры, обозначающие мощность ламп, Вт; 7—цифры (000— 999), обозначающие номер модификации; 8—буква и цифра, обозначающие климатическое исполнение (У—для районов с умеренным климатом,Т—для районов с тропическим климатом и т.д.) и категорию размещения светильников (1—на открытом воздухе, 2—под навесом и другими полуоткрытыми сооружениями, 3—в закрытых неотапливаемых помещениях, 4—в закрытых отапливаемых помещениях).
Каждая серия объединяет светильники, имеющие конструктивные особенности, определяемые примененным материалом и формой рассеивающих и экранирующих элементов, характером обслуживания, способом подвески (на трубу, на крюк, на трос и т.д), способом присоединения к питающей сети (через штепсельный разъем, клеммник или непосредственно к проводке).
Конструкции большинства светильников предусматривают встроенный штепсельный разъем. Как выбрать светильник?
При выборе светильника учитывают: условия окружающей среды, требования к характеру светораспределения, электробезопасность и экономическую целесообразность. В квартирах и комнатах с низкими потолками рекомендуется применять светильники, люстры с короткими и регулирующимися штангами, шнурами; подвесы с плоскими рассеивателями, подобранными по декоративной расцветке, соответствующей цвету стен жилого помещения. Можно применять потолочные светильники и плафоны с декоративной отделкой. Для комнат и квартир с высокими потолками, просторных помещений подойдут многорожковые люстры, декоративные подвесные светильники с большим количеством (3, 4, 5) рассеивателей. Для создания уюта и обстановки, способствующей отдыху человека после трудового дня, учебы, чтению художественной литературы, применяют светильники для местного освещения. Вариантов исполнения светильников местного освещения очень много. Они бывают настольными, потолочными, настенными, напольными. В целях экономии электроэнергии, создания мягкого светораспределения, однородной освещенности и яркости применяют светильники с люминесцентными лампами. Промышленность выпускает много модификаций люминесцентных светильников разной конфигурации и декоративных рисунков рассеивателя. Спальня кроме общего освещения может иметь светильник возле туалетного столика. Лучше всего устроить двустороннее освещение. Источник света располагают на уровне головы человека, сидящего у столика, чтобы был мягкий, рассеянный свет белого или чуть розового оттенка. Свет, падающий сверху, дает глубокие тени на лице. Прихожая должна быть ярко освещена: висячий светильник или плафон под потолком, а также бра, лучше всего с обеих сторон зеркала и примерно на уровне головы. Детская комната — рекомендуется общее освещение, специальное (над рабочим столом и местом для игр) и ночник. В комнатах для детей дошкольного возраста светильники, выключатели и штепсельные розетки ставятся в местах, не доступных для детей.
Проводка лучше всего скрытая. В детских комнатах не следует ставить настольных ламп, падение их может вызвать несчастный случай. Над рабочим местом ребенка желательно иметь настенную лампу на шарнирных кронштейнах, прикрепленную с левой стороны стола. Абажур висячей лампы должен быть сделан из материала, рассеивающего свет. Абажур настенной лампы из непрозрачного материала должен давать узкую полоску света, сосредоточенного на рабочем месте. Освещение комнаты достаточно яркое, но без резкого перехода от света к тени. Кухня может иметь общее освещение и местное — над рабочим столом хозяйки, над плитой. Для освещения кухонного стола, мойки, плиты очень удобны лампы дневного света: они более прочны, а энергии расходуют в четыре раза меньше, чем обычные лампы. Над обеденным столом люминесцентные лампы устанавливать не рекомендуется, они придают продуктам бледный, неаппетитный вид. Ванная — рекомендуется ставить вверху плафон, освещающий всю комнату. Здесь можно применять лампы накаливания и люминесцентные. В подсобных помещениях светильники выбирают по назначению и условиям окружающей среды. Сухие складские помещения — следует применять светильники со стеклянным отражателем, предотвращающим выпадание колбы лампы при эксплуатации (ПСХ-60, НСП-03, НСП-01). Погреба, коридоры, сени, веранды освещаются светильниками, изготовленными для помещений с повышенной влажностью, или подвесными патронами, изготовленными из фарфора (НБО-60, ПСХ-60, ПСХ-75). Подсобные помещения для содержания скота, птицы, а также сараи освещаются светильниками, рассчитанными для помещений с химически активной средой. К ним относятся «Астра-1», «Астра-2», «Астра-11», «Астра-12» и т. д. Мощность ламп для жилых комнат выбирают исходя из удельной мощности, т. е. около 10 Вт на один квадратный метр площади. Для нежилых помещений квартиры предусматривается удельная мощность 6 Вт/м^2. Светильники с люминесцентными и ртутными лампами типа ДРЛ применяют для освещения помещений, где выполняют работу большой и средней точности, а также в производственных помещениях с недостаточным или отсутствующим естественным освещением, во вспомогательных помещениях с постоянным пребыванием людей при нормируемой освещенности выше 100 лк.
Светильники с этими типами ламп и прожекторы с лампой ДРЛ рекомендуются для освещения дворовых территорий и открытых пространств, требующих повышенной освещенности. Кроме того, светильники с люминесцентными лампами ЛДЦ применяют в помещениях, где выполняются работы, требующие распознавания цветовых оттенков. Светильники с ртутными лампами ДРЛ целесообразно применять при высоте помещения более б м, где не требуется правильного различия цветов в наружных установках. Как закрепить и подключить светильник (люстру)? Во время подготовительных работ намечают место установки светильника, пробивают отверстия, сквозные проходы, гнезда для установки крепежных деталей. При этом, если потолок сплошной, сквозь него пробивают отверстие, через которое пропускают крюк и закрепляют гайкой с верхней стороны. Если перекрытие полое, то крюк укрепляют в полости панели с помощью проволочной защелки, после чего отверстие заделывают цементным раствором. Подвесные светильники прикрепляют к перекрытиям на крюках. Заводы изготовляют несколько видов крюков и других приспособлений для крепления светильников к перекрытиям, выполненным как из многопустотных плит, так и из монолитной конструкции (рис. 31). Крюки У623Б применяют для подвески светильников массой до 15 кг к многопустотным плитам
Рис. 31. Арматура для крепления светильников: а — крюк У623; б - крюк У625; в - шпилька У632; 1 - ось; 2 - крюк с изолирующим колпаком; 3 — опорная планка перекрытий. В зависимости от размера этих плит опорные планки 3 крюков могут переставляться на оси 1. Концы крюков обязательно изолируют колпачком 2. Крюки У625, У629 размером соответственно 155 и 215 мм, изготовляемые из стали с металлическим покрытием, используют для подвески светильников массой до 7 кг к сплошным плитам перекрытий. Крюки и шпильки с поворотными планками позволяют завести их в отверстие в перекрытии и закрепить в нем снизу, что значительно облегчает их установку. В соответствии с требованиями к подвеске светильников с металлическими корпусами в жилых и общественных зданиях конец крюков должен быть покрыт изоляцией. Соединение проводов сети и светильника в этих случаях выполняют с применением колодок-зажимов. Для зарядки осветительной арматуры общего освещения должны применяться провода с медными жилами сечением не менее 0, 5 мм^2 внутри зданий и 1 мм^2 вне зданий. Металлические корпуса светильников общего освещения с лампами ДРЛ, ДРИ, ДНаТ и люминесцентными необходимо занулять при помощи перемычки между нулевым проводом и заземляющим винтом светильника.
Что представляют собой электродвигатели серии ,АИРP?
С 1972 г. началось производство асинхронных коротко замкнутых электродвигателей серии 4А общепромышленного назначения. Мощность их от 0, 12 до 400 кВт при высоте оси вращения от 50 до 355 мм. Эти электродвигатели по сравнению с двигателями серии А2 и А02 имеют следующие преимущества: меньшую массу (в среднем на 18%), большую компактность, большие пусковые моменты, повышенную надежность, меньший уровень шума и вибраций.
По степени защиты от воздействия окружающей среды двигатели выпускаются в двух вариантах:
1) закрытые обдуваемые (обозначение IP44). Воздух для охлаждения корпуса двигателя подается вентилятором. Электродвигатели с высотой оси вращения 280 — 355 мм имеют дополнительную вентиляцию;
2) защищенные от капель, падающих под углом 60° к вертикали (обозначение IP23). Вовнутрь электродвигателя не могут попасть посторонние тела диаметром 12, 5 мм и более. Станина и щиты электродвигателей с высотами оси вращения 50 — 63 мм сделаны из алюминия; с высотами 71 — 100— станина из алюминия, а щиты из чугуна; с высотами 112 — 355 мм станина и щиты изготовлены из чугуна. Коробка выводов для двигателей с высотами оси вращения 56 — 250 мм располагается сверху станины, с высотами 280 — 355 мм — сбоку станины. Валы и подшипники рассчитаны на применение клиноременной и зубчатой передач.
Технические данные электродвигателей серии 4А общепромышленного назначения приведены в таблице 6.
Начат также серийный выпуск двигателей серии 4А сельскохозяйственного назначения мощностью от 7,5 до 30 кВт. Они имеют ту же шкалу мощности, что и электродвигатели общего применения. Синхронная частота вращения этих двигателей 3000, 1500 и 1000 об/мин.
Электродвигатели сельскохозяйственного назначения имеют повышенный пусковой момент, что
Таблица 6. Основные технические данные электродвигателей серии 4А общепромышленного назначения
Тип электродвигателя |
Номинальная мощность, кВт |
КПД, % |
Коэффициент мощности |
Кратность пускового тока |
Кратность пускового мо-мента |
Перегрузочная способность |
Кратность минимального момента |
1 |
2 |
3 |
4 |
5 |
б |
7 |
8 |
Закрытые обдуваемые Синхронная частота вращения 3000 об/мин |
|
||||||
4М50А2УЗ |
0,09 |
60,0 |
0,70 |
5,0 |
2,0 |
2,2 |
1,2 |
4АА50В2УЗ |
0,12 |
63,0 |
0,70 |
5,0 |
2,0 |
2,2 |
1,2 |
4АА56А2УЗ |
0,18 |
66,0 |
0,76 |
5,0 |
2,0 |
2,2 |
1,2 |
4АА56В2У5 |
0,25 |
68,0 |
0,77 |
5,0 |
2,0 |
2,2 |
1,2 |
4АА63А2УЗ |
0,37 |
70,0 |
0,86 |
5,0 |
2,0 |
2,2 |
1,2 |
4АА63В2УЗ |
0,55 |
73,0 |
0,86 |
5,0 |
2,0 |
2,2 |
1,2 |
4А71А2УЗ |
0,75 |
77,0 |
0,87 |
5,5 |
2,0 |
2,2 |
1,2 |
4А71В2УЗ |
1,1 |
77,5 |
0,87 |
5,5 |
2,0 |
2,2 |
1,2 |
4А80А2УЗ |
1,5 |
81,0 |
0,85 |
6,5 |
2,0 |
2,2 |
1,2 |
4А80В2УЗ |
2,2 |
83,0 |
0,87 |
6,5 |
2,0 |
2,2 |
1,2 |
4A90L2У3 |
3,0 |
84,5 |
0,88 |
6,5 |
2,0 |
2,2 |
1,2 |
4A100S2У3 |
4,0 |
86,5 |
0,89 |
7,5 |
2,0 |
2,2 |
1,2 |
4A100L2У3 |
5,5 |
87,5 |
0,91 |
7,5 |
2,0 |
2,2 |
1,2 |
4А112М2УЗ |
7,5 |
87,5 |
0,88 |
7,5 |
2,0 |
2,2 |
1,0 |
Синхронная частота вращения 1500 об/мин |
|
||||||
4АА50А4УЗ |
0,06 |
50,0 |
0,60 |
5,0 |
2,0 |
2,2 |
1.2 |
4АА50В4УЗ |
0,09 |
55,0 |
0,60 |
5,0 |
2,0 |
2,2 |
1,2 |
4АА56А4УЗ |
0,12 |
63,0 |
0,66 |
5,0 |
2,0 |
2,2 |
1,2 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
4АА56В4УЗ | 0,18 | 64,0 | 0,64 | 5,0 | 2,0 | 2,2 | 1,2 |
4АА63А4УЗ | 0,25 | 68,0 | 0,65 | 5,0 | 2,0 | 2,2 | 1,2 |
4АА63В4УЗ | 0,37 | 68,0 | 0,69 | 5,0 | 2,0 | 2,2 | 1,2 |
4А71А4УЗ | 0,55 | 70,5 | 0,70 | 4,5 | 2,0 | 2,2 | 1,6 |
4А71В4УЗ | 0,75 | 72,0 | 0,73 | 4,5 | 2,0 | 2,2 | 1,6 |
4А80А4УЗ | ',1 | 75,0 | 0,81 | 5,0 | 2,0 | 2,2 | 1,6 |
4А80В4УЗ | 1,5 | 77,0 | 0,83 | 5,0 | 2,0 | 2,2 | 1,6 |
4А90L4УЗ | 2,2 | 80,0 | 0,83 | 6,0 | 2,0 | 2,2 | 1,6 |
4A100S4V3 | 3,0 | 82,0 | 0,83 | 6,5 | 2,0 | 2,2 | 1,6 |
4A100L4V3 | 4,0 | 84,0 | 0,84 | 6,5 | 2,0 | 2,2 | 1,6 |
4А112М4УЗ | 5,5 | 85,5 | 0,85 | 7,0 | 2,0 | 2,2 | 1,6 |
4A132S4V3 | 7,5 | 87,5 | 0,86 | 7,5 | 2,0 | 2,2 | 1.6 |
Синхронная частота вращения 1000 об/мин | |||||||
4АА63А6УЗ | 0,18 | 56,0 | 0,62 | 4,0 | 2,0 | 2,2 | 1,2 |
4АА63В6УЗ | 0,25 | 59,0 | 0,62 | 4,0 | 2,0 | 2,2 | 1,2 |
4А71А6УЗ | 0,37 | 64,5 | 0,69 | 4,0 | 2,0 | 2,2 | 1,6 |
4А71В6УЗ | 0,55 | 67,5 | 0,71 | 4,0 | 2,0 | 2,2 | 1,6 |
4А80А6УЗ | 0,75 | 69,0 | 0,74 | 4,0 | 2,0 | 2,2 | 1,6 |
4А80В6УЗ | 1,1 | 74,0 | 0,74 | 4,0 | 2,0 | 2,2 | 1,6 |
4А90L6УЗ | 1,5 | 75,0 | 0,74 | 5,5 | 2,0 | 2,2 | 1,6 |
4B100L6У3 | 2,2 | 81,0 | 0,73 | 5,5 | 2,0 | 2,2 | 1,6 |
4А112МА6УЗ | 3,0 | 81,0 | 0,76 | 6,0 | 2,0 | 2,2 | 1,6 |
4А112МВ6УЗ | 4,0 | 82,0 | 0,81 | 6,0 | 2,0 | 2,2 | 1,6 |
4A132S6У3 | 5,5 | 85,0 | 0,80 | 7,0 | 2,0 | 2,2 | 1,6 |
4А132М6УЗ | 7,5 | 85,5 | 0,81 | 7,0 | 2,0 | 2,2 | 1,6 |
обеспечивает их запуск и устойчивую работу при пониженном напряжении. Коробки выводов двигателей двухштуцерные с клеммными колодцами. Электродвигатели серии 4А при высоте оси вращения 56-132 мм выполняют на номинальное напряжение 380 В с тремя выводами обмотки статора; при высоте оси вращения 160 и 180 мм - на напряжение 380/660 B* с шестью выводными концами.
Электрические помощники в доме,на даче и в хозяйстве.
Какие бывают электрические двигатели и где они применяются? Какие паспортные данные указываются на щитке асинхронного электродвигателя? Как обозначаются выводы обмоток электрических машин? Какие применяются формы исполнения электрических машин по способу крепления и монтажа? Kак изменяются параметры трехфазного асинхронного двигателя при условиях, отличных от номинальных? Как высушить изоляцию обмоток? Как включить трехфазный электродвигатель в однофазную сеть? Что представляют собой электродвигатели серии 4А,АИРP? Какие выпускаются машины постоянного тока? Как расшифровываются условные обозначения машин постоянного тока серии 2П? Kак осуществляется пуск двигателя постоянного тока? Как определить допустимую степень искрения на коллекторе в электродвигателе постоянного тока? Kакие применяют нагревательные провода и кабели? Как устроить электрообогреваемый пол? Kак устроить электрообогреваемый парник или теплицу? Какие электрические приборы применяют для приготовления пищи? Какие применяют электрические устройства для отопления и нагрева воды? Какие применяют электрические санитарно-гигиенические приборы? Какой применяют электрический нагревательный инструмент? Какие типов выпускают электрические холодильники? Kак устроена стиральная машина? Какие электрифицированные машины используют в кормоприготовлении для подсобного хозяйства? Какой источник света выбрать для освещения помещений? Как обеззаразить помещение, воду или получить «Загар» зимой? Как подключить патрон? Что представляет собой светильник? Какие розетки применяют для электропроводок и как осуществить их установку? Как выполнить соединение, оконцевание жил провода (кабеля) и подключение к зажимам аппаратов?
Многообразие электрических помощников и особенности их устройства, подключения и автоматизации не позволяют в ограниченном объеме изложить достаточно полно все особенности их устройства, тем более что их парк постоянно расширяется и совершенствуется.
Нами рассмотрены некоторые общие элементы устройств (электродвигатели, нагреватели, пускозащитная аппаратура), их выбор, подключение, а также некоторые из устройств в комплексе, позволяющие непрофессионалу сориентироваться в объектах воздействия и при необходимости выполнить замену или ремонт.
Kак изменяются
параметры трехфазного асинхронного двигателя при условиях, отличных от номинальных?
Понижение напряжения при номинальной частоте приводит к уменьшению тока холостого хода и магнитного потока, а значит, и к уменьшению потерь в стали. Величина тока статора, как правило, повышается, коэффициент мощности увеличивается, скольжение возрастает, а КПД несколько падает. Вращающий момент двигателя уменьшается, так как он пропорционален квадрату напряжения.
При повышении напряжения сверх номинального и номинальной частоте двигатель перегревается из-за увеличения потерь в стали. Вращающий момент двигателя растет, величина скольжения уменьшается. Ток холостого хода увеличивается, а коэффициент мощности ухудшается. Ток статора при полной нагрузке может уменьшиться, а при малой нагрузке может увеличиться вследствие увеличения тока холостого хода.
При уменьшении частоты и номинальном напряжении увеличивается ток холостого хода, что приводит к ухудшению коэффициента мощности. Ток статора обычно возрастает. Увеличиваются потери в меди и стали статора, охлаждение двигателя несколько ухудшается вследствие уменьшения частоты вращения.
При повышении частоты сети и номинальном напряжении уменьшается ток холостого хода и вращающий момент.
Как обеззаразить помещение, воду или получить «Загар» зимой?
Решение этих задач возможно при использовании ультрафиолетового излучения. Излучения этой области при определенных дозах облучения оказывают благотворное действие на живые организмы, они способны превращать провитамин D в активно действующий витамин D, который управляет процессами отложения солей кальция в костных тканях животных. Излучения этой области обладают сильным бактерицидным действием. Они используются для стерилизации воздуха, воды, посуды и т. д.
Источником ультрафиолетового излучения в основном являются лампы ДБ, ЛЭ, ЛЭР и ДРТ. Лампы ДРТ используют в сети переменного тока напряжением 127 или 220 В. Нормальное положение ламп при работе — горизонтальное. Режим работы устанавливается через 8—15 мин после включения. Лампы ДРТ дают мощный поток ультрафиолетовых лучей с длинами волн от 240 нм до границ видимого спектра. Они применяются с профилактической и лечебной целью в медицине, а также для бактерицидного и эритемного облучения в животноводческих помещениях — в первую очередь молодняка. Срок службы ламп ДРТ не менее 800 ч.
Эритемные люминесцентные лампы типов ЛЭ-30, ЛЭР-30, ЛЭР-40 устроены подобно обычным люминесцентным лампам типов ЛБ или ЛД, но отличаются от них составом люминофора и сортом стекла трубки. Состав люминофора подбирают так, чтобы длина волны излучения находилась в пределах 280—380 нм, что способствует недостающему зимой ультрафиолетовому излучению солнца. Максимум излучения лежит в пределах 310-320 нм. Излучение этой лампы богато не только эритемным действием, но и антирахитньм так как относительные эритемная и антирахитная эффективности в значительной мере совпадают.
Обозначение лампы ЛЭР-40 расшифровывается так: лампа эритемная рефлекторная (с отражающим слоем), мощностью 40 Вт. При работе лампа дает слабое голубое свечение, что вызывается излучением паров ртути в видимой области спектра, проходящим через слой люминофора. Схема включения лампы аналогична схеме включения люминесцентных ламп дневного или белого света.
Эритемные люминесцентные лампы можно применять совместно с люминесцентными лампами, а также с лампами накаливания.
Их можно использовать с искусственным освещением, в основном в темные часы суток. В связи с тем, что осветительные и Эритемные лампы, возможно, будут действовать в разное время, необходимо предусматривать раздельное включение и выключение зритемных и осветительных ламп. Для защиты зрения применяют либо светильники с системой плоских пластинок, либо светильники отраженного света. Бактерицидные лампы типа ДБ представляют собой газоразрядные ртутные лампы низкого давления, устроенные подобно лампам ЛБ, ЛД и ЛЭ. Бактерицидные лампы изготовляют мощностью 60 Вт (лампа ДБ-60) и мощностью 30 Вт (ДБ-30). Схемы включения бактерицидных ламп аналогичны схемам включения эритемных и люминесцентных ламп. Бактерицидные лампы можно применять для обеззараживания воздуха помещений, предметов обихода, питьевой и минеральной воды, для обез- замораживания и предохранения от микробного загрязнения пищевых продуктов, оборудования и тары на пищевых предприятиях. Обеззараживать воздух помещений ультрафиолетовым облучением можно как в присутствии, так и в отсутствие людей. В первом случае необходимо применять меры к максимальному сокращению бактерицидной облученности на уровне до 2 м от пола. Применять неэкранированные («голые») лампы, которые могут оказываться в поле зрения, категорически запрещается, так как их излучение может вызвать конъюктивит. Как обогреть молодняк птицы и животных или увеличить скорость высыхания автомобиля после покраски? Решение этих задач возможно при использовании инфракрасного излучения. Излучение этой области производит нагрев поверхностей, находящихся под лампами-термоизлучателями. Источником ИК-излучения служит биспираль из вольфрамовой проволоки, нагреваемая в рабочем режиме до температуры 1800—2300°С. Конструкция ламп-термоизлучателей в общих чертах схожа с конструкцией осветительных ламп накаливания. Для снижения интенсивности видимого излучения нижнюю часть колбы некоторых инфракрасных ламп покрывают красным (лампы ИКЗК) или синим (лампы ИКЗС) термостойким лаком.С внутренней стороны в верхней части колбы нанесено зеркальное покрытие. Лампа вкручивается в обычный патрон Ц27, работает на напряжении 220 В без дополнительной пускорегулирующей аппаратуры. Срок службы ламп 2—10 тыс. ч. Обозначение ламп: ИК— инфракрасная; 3 — зеркальная; К или С — цвет окрашенной колбы; напряжение сети в вольтах и мощность лампы в ваттах, например - ИКЗК220-250.
Как обозначаются выводы обмоток электрических машин?
При соединении обмоток статора трехфазных машин переменного тока звездой приняты следующие обозначения начала обмоток: первая фаза — С1, вторая фаза — С2, третья фаза — СЗ, нулевая точка — 0.
При шести выводах начало обмотки первой фазы
— С1, второй —С2, третьей — СЗ; конец обмотки первой фазы — С4, второй — С5, третьей — Сб.
При соединении обмоток в треугольник зажим первой фазы — С1, второй фазы — С2 и третьей фазы - СЗ.
У трехфазных асинхронных электродвигателей роторная обмотка первой фазы — Р1, второй фазы
— Р2, третьей фазы — РЗ, нулевая точка — 0.
У асинхронных многоскоростных электродвигателей выводы обмоток для 4 полюсов — 4С1, 4С2, 4СЗ; для 8 полюсов - 8С1, 8С2, 8СЗ и т. п.
У асинхронных однофазных двигателей начало главной обмотки —С1, конец — С2; начало пусковой обмотки — П1, конец — П2. В электродвигателях малой мощности, где буквенное обозначение выводных концов затруднено, их можно обозначать разноцветными проводами.
При соединении звездой начало первой фазы имеет желтый провод, второй фазы — зеленый, третьей фазы — красный, нулевая точка — черный.
При шести выводах начала фаз обмоток имеют такую же расцветку, как и при соединении звездой, а конец первой фазы — желтый с черным провод, второй фазы — зеленый с черным, третьей фазы — красный с черным.
У асинхронных однофазных электродвигателей начало вывода главной обмотки — красный провод, конец — красный с черным. У пусковой обмотки начало вывода — синий провод, конец — синий с черным.
В коллекторных машинах постоянного и переменного тока начало обмотки якоря обозначается белым цветом, конец - белым с черным; начало последовательной обмотки возбуждения - красным, конец - красным с черным, дополнительный вывод — красным с желтым; начало параллельной обмотки возбуждения — зеленым, конец - зеленым с черным. У синхронных машин (индукторов) начало обмотки возбудителя — И1, конец — И2.
У машин постоянного тока начало обмотки якоря - Я1, конец - Я2. Начало компенсационной обмотки - К1, конец - К2; начало обмотки добавочных полюсов - Д1, конец - Д2; начало обмотки возбуждения последовательной-С1, конец - С2; начало обмотки возбуждения параллельной (шунтовой) - Ш1, конец - Ш2; начало обмотки или провода уравнительного — У1, конец — У2.
Как определить допустимую степень искрения на коллекторе в электродвигателе постоянного тока?
Повышенное искрение может происходить из-за неправильной установки щеток (не по заводским меткам), плохого прилегания щеток к коллектору, загрязнения или частичного выгорания коллектора, повышенной вибрации щеточного устройства и др.
Полностью устранить искрение практически не удается, поэтому необходимо уметь правильно определить допустимую степень искрения.
В соответствии с нормами искрение на коллекторе оценивается по степени искрения под сбегающим краем щетки и по шкале (классам коммутации), приведенной в таблице 9.
Допустимую степень искрения можно определить и по цвету образующихся искр. Небольшое искрение голубовато-белого цвета, почти всегда имеющееся на сбегающем крае щетки, не представляет собой никакой опасности. Удлиненные искры желтоватого оттенка свидетельствуют о неправильной коммутации. Зеленая окраска искр и присутствие частичек меди на рабочей части щеток указывают на механические повреждения коллектора.
Таблица 9. Степень и характеристика искрения
Степень искрения (класс коммутации) |
Характеристика степени искрения |
Состояние коллектора и щеток |
1 |
Отсутствие искрения (темная коммутация) |
Отсутствие почернения на коллекторе и нагара на щетках |
1.25 |
Слабое точечное искрение под небольшой частью щетки |
|
1.5 |
Слабое искрение под большей частью щетки |
Появление следов почернения на коллекторе, легко устраняемых протиранием поверхности коллектора бензином, а также следов нагара на щетках |
2 |
Искрение под всем краем щетки. Допускается только при кратковременных толчках нагрузки и перегрузки |
Появление следов почернения на коллекторе, не устраняемых протиранием поверхности бензином, а также следов нагара на щетках |
3
|
Значительное искрение под всем краем щетки с наличием крупных и вылетающих искр. Допускается только для моментов прямого (без реостатных ступеней) включения или реверсирования машин, если при этом коллектор и щетки остаются в состоянии, пригодном для дальнейших работ |
Значительное почернение на коллекторе, не устраняемое протиранием поверхности коллектора бензином, а также подгар и разрушение щеток |
Kак определить положение геометрической нейтрали машины постоянного тока? Для правильной установки щеток машин постоянного тока необходимо определить положение геометрической нейтрали. Определение геометрической нейтрали может быть произведено методом наибольшего напряжения, индуктивным методом и методом двигателя. При определении нейтрали методом наибольшего напряжения генератор с независимым возбуждением вращают вхолостую с постоянной частотой вращения и током возбуждения. Щетки передвигают по коллектору до тех пор, пока вольтметр, присоединенный к зажимам якоря, не даст максимального отклонения. Такое положение щеток соответствует геометрической нейтрали. При индуктивном методе машина остается неподвижной и возбуждение подается от постороннего источника постоянного тока. К зажимам якоря подключают чувствительный вольтметр. Щетки передвигают до тех пор, пока внезапное замыкание или размыкание цепи возбуждения не перестает вызывать отклонения стрелки вольтметра. Это положение щеток будет соответствовать положению геометрической нейтрали. При размыкании обмотки возбуждения в ней могут возникнуть большие перенапряжения. Поэтому ток в обмотке возбуждения необходимо устанавливать небольшим или зашунтировать обмотку возбуждения сопротивлением. При определении нейтрали методом двигателя находят такое положение щеток, при котором частота вращения двигателя в обе стороны будет одинаковой. Опыт проводят под нагрузкой, при которой ток якоря равен половине номинального. Изменение направления вращения производят изменением полярности зажимов обмотки якоря. Какие бывают электрические нагреватели? Косвенный электронагрев сопротивлением применяют для нагрева и термообработки проводящих, непроводящих, твердых, жидких материалов в области температур до 1500°С. Основным элементом электротермической установки сопротивления служит электрический нагреватель — тепловыделяющий источник, преобразующий электрическую энергию в тепловую. Нагреватель представляет собой высокоомное сопротивление — нагревательный элемент, оборудованный вспомогательными устройствами для подвода тока, электроизоляции, защиты от механических повреждений, крепления.
Нагревательные элементы выполняют из металлических и неметаллических материалов в виде проволочных спиралей, ленточных зигзагов, стержней, трубок, пленок на изолирующих подложках. Электронагреватели сопротивления классифицируются по исполнению (открытые, закрытые, герметические); материалу нагревательных элементов (металлические, полупроводниковые, неметаллические); конструктивному исполнению (проволочные, ленточные, стержневые, пленочные); рабочей температуре (низкотемпературные, средне температурные, высокотемпературные) и другим признакам. Открытые нагреватели (рис. 8, а, б) просты по устройству, имеют хорошие условия для теплопередачи, ремонтоспособны. Их недостаток — повышенная электрическая опасность, низкий срок службы. Они применяются главным образом в высокотемпературных установках с теплоотдачей преимущественно излучением (термоизлучатели, электрические печи). Закрытые нагреватели (рис. 8, в) размещают в корпусе, предохраняющем их от механических воздействий и нагреваемой среды. Герметические нагреватели защищены от внешних воздействий, в том числе от доступа воздуха.
Рис. 8. Электрические нагреватели: а — спираль; б — лента; в — нагреватель в корпусе; 1 — металлический кожух; 2 — нагревательный провод; 3 — изолятор; d — диаметр провода; h — шаг спирали; D — диаметр спирали; а — толщина ленты, b — ширина ленты Kак устроены трубчатые электрические нагреватели? Kак их выбрать? Трубчатые электронагреватели (ТЭНы) по исполнению являются герметическими. Это наиболее распространенные электротермические устройства установок низко- и среднетемпературного нагрева.
Рис. 9. Трубчатый электронагреватель (ТЭН): 1 — оболочка (трубка); 2 — спираль; 3 — контактный стержень; 4 — изолятор (периклаз или кварцевый песок); 5 — мастика; 6 — фарфоровая втулка; 7 — контактная гайка. L — общая длина ТЭНа; Lакт — активная (рабочая) длина t; tк — длина контактного стержня; h — шаг спирали; d — диаметр провода; dcn — диаметр спирали; dcn.наp — диаметр спирали наружный; dmp. вн — диаметр трубки внутренний; dmp.нар— диаметр трубки наружный Устройство типового ТЭНа показано на рис.9,а.
Он состоит из тонкостенной (0,8—1,2 мм) металлической трубки (оболочки) 7, в которой размещена спираль 2 из проволоки высокого удельного электрического сопротивления. Концы спирали соединены с контактным стержнем 3, наружные выводы 7 которого служат для подключения нагревателя к питающей сети. Материалом трубки может быть углеродистая сталь марок 10 или 20, если температура поверхности ТЭНа в рабочем режиме не превышает 450°С, и нержавеющая сталь 12Х18Н10Т при более высоких температурах или при работе в агрессивных средах (табл.10). Спираль изолируют от трубки наполнителем 4, имеющим высокие электроизолирующие свойства и хорошо проводящим теплоту. В качестве наполнителя используют периклаз (кристаллическая окись магния). После заполнения наполнителя трубку опрессовывают. Под большим давлением периклаз превращается в монолит, надежно фиксирующий спираль по оси трубки. Спрессованный нагреватель может быть изогнут для придания необходимой формы. Контактные стержни 3 изолируют от трубки изолятором 6, торцы герметизируют влагозащищающим кремнийорганическим лаком (герметиком) 5. Преимущество ТЭНов — универсальность, надежность и безопасность обслуживания. Их можно использовать при контакте с газообразными и жидкими средами при давлении до 9, 8 • 105 Па. Они не боятся ударов и вибраций, но не являются взрывобезопасными. Рабочая температура поверхности ТЭНов может достигать 800°С, что удовлетворяет большинству бытовых и сельскохозяйственных тепловых процессов и позволяет использовать их в качестве тепловыделяющих источников не только в установках кондуктивного и конвективного нагрева, но и в качестве излучателей в установках лучистого (инфракрасного) нагрева. Вследствие герметизации спиралей срок службы ТЭНов достигает 10 тыс. ч. ТЭНы изготовляют по ГОСТ 13268. Единичная мощность их (15—12)*103 Вт, а в блоке (из двух или трех нагревателей) достигает 24-103 Вт, развернутая длина 185—5280 мм, наружный диаметр трубки 6, 5—8, 0—10—12, 5—16 мм, номинальное напряжение 12, 36, 48, 55, 127, 220 и 380 В, климатическое исполнение УХЛ4 или УХЛЗ по ГОСТ 15150. Структура условного обозначения ТЭНа: ТЭН -1 23/4567, где 1 — развернутая длина ТЭНа по оболочке L, см (рис. 9); 2 — длина контактного стержня в заделке (изменяется от 40 до 630 мм); 3-номинальный диаметр трубки, мм; 4 — номинальная мощность, кВт; 5 — обозначение нагреваемой среды и материала трубки (табл. 10); 6 — номинальное напряжение.
В; 7 — вид климатического исполнения по ГОСТ 15150. Пример: трубчатый электронагреватель ТЭН-120Г13/1Т220УХЛ4 имеет развернутую длину 120 см, длина контактного стержня в заделке (индекс Г) равна 125 мм, диаметр трубки 13 мм, номинальная мощность 1 кВт, предназначен для нагрева воздушной среды со скоростью движения до 1,5 м/с; трубка из стали 12Х18Н10Т, температура поверхности трубки от 450 до 650°С (индекс Т); номинальное напряжение 220 В; вид климатического исполнения УХЛ4 по ГОСТ 15150. •ТЭНы выпускают разнообразной конструкции, что позволяет встраивать их в самые разные установки, начиная от промышленных печей и до бытовых электронагревательных приборов. Помимо обычного исполнения выпускают одноконцевые ТЭНы патронного типа диаметром от 6,5 до 20 мм, отличающиеся высокой удельной поверхностной мощностью (до 38 • 10^4 Вт/м^2), а также плоские ТЭНы (сечением 5х11 и 6х17 мм) с развитой теплоотдающей поверхностью. К недостаткам ТЭНов следует отнести высокую металлоемкость и стоимость из-за использования дорогостоящих материалов (нихром, нержавеющая сталь), невысокий срок службы, невозможность ремонта при перегорании спирали. Таблица 10. Нагреваемые среды, характер нагрева, предельная (удельная) поверхностная мощность, материал оболочки ТЭНа и ее температура
Kак осуществляется пуск двигателя постоянного тока?
При включении двигателя возникает большой пусковой ток, превышающий номинальный в 10 — 20 раз. Для ограничения пускового тока двигателей мощностью более 0,5 кВт последовательно с цепью якоря включают пусковой реостат (рис. 7).
Рис. 7. Схема включения электрических двигателей постоянного тока: а - с помощью пускового реостата; б - схема электродвигателя со смешанным возбуждением; в - схема универсального коллекторного электродвигателя. Л - зажим, соединенный с сетью; Я - зажим, соединенный с якорем; М -зажим, соединенный с цепью возбуждения; 0 - холостой контакт; 1 - дуга; 2 - рычаг; 3 - рабочий контакт.
Величину сопротивления пускового реостата можно определить по выражению
Rn =U/(1,8 - 2,5)Iном-Rя
где U — напряжение сети, В;
Iном — номинальный ток двигателя. А;
Rя — сопротивление обмотки якоря, Ом.
Перед включением двигателя необходимо убедиться в том, что рычаг 2 пускового реостата (рис.7) находится на холостом контакте 0. Затем включают рубильник и рычаг реостата переводят на первый промежуточный контакт. При этом двигатель возбуждается, а в цепи якоря появляется пусковой ток, величина которого ограничена всеми четырьмя секциями сопротивления Rn. По мере увеличения частоты вращения якоря пусковой ток уменьшается и рычаг реостата переводят на второй, третий контакт и т.д., пока он не окажется на рабочем контакте.
Пусковые реостаты рассчитаны на кратковременный режим работы, а поэтому рычаг реостата нельзя длительно задерживать на промежуточных контактах: в этом случае сопротивления реостата перегреваются и могут перегореть.
. Прежде чем отключить двигатель от сети, необходимо рукоятку реостата перевести в крайнее левое положение. При этом двигатель отключается от сети, но цепь обмотки возбуждения остается замкнутой на сопротивление реостата. В противном случае могут появиться большие перенапряжения в обмотке возбуждения в момент размыкания цепи.
При пуске в ход двигателей постоянного тока регулировочный реостат в цепи обмотки возбуждения следует полностью вывести для увеличения потока возбуждения.
Для пуска двигателей с последовательным возбуждением применяют двухзажимные пусковые реостаты, отличающиеся от трехзажимных отсутствием медной дуги и наличием только двух зажимов — Л и Я.
Kак производится маркировка выводных концов машин постоянного тока?
В качестве примера рассмотрим маркировку выводных концов машины постоянного тока со смешанным возбуждением (рис. 7).
Для определения выводных концов отдельных обмоток (последовательной C1, C2; параллельной ЦП, Ш2 и якорной Я1, Я2 с дополнительными полюсами Д1, Д2) необходимо иметь контрольную лампу или вольтметр и источник переменного тока. Та из трех обмоток, при касании которой лампа горит тускло, будет параллельной (шунтовой) обмоткой. Лампа не будет гореть при касании ее одним концом к коллектору машины, а другим — к выводам последовательной обмотки и будет гореть при касании к выводам обмотки дополнительных полюсов, соединенной с якорем.
Как подключить патрон?
В светильниках применяют патроны различной конструкции. Для ламп накаливания и ламп ДКЛ предназначены резьбовые патроны: для ламп мощностью до 60 Вт — патроны с диаметром резьбы 14 и 27 мм (или с резьбой Ц14 — малый цоколь и Ц27 — средний цоколь), для ламп мощностью до 200 Вт — патроны с резьбой Ц27, а для ламп мощностью от 300 до 1500 Вт -патроны с резьбой Ц40 (большой цоколь).
По конструктивному исполнению различают патроны подвесные с ниппелем, с ушком для подвешивания, потолочные и настенные. Наиболее распространены патроны в пластмассовом и фарфоровом корпусах. Контакты и контактные зажимы для присоединения проводов смонтированы на фарфоровых вкладышах.
К контактным зажимам патронов можно присоединить медные провода сечением 0, 5; 0, 75; 1;
1, 5; 2, 5 мм^2 и алюминиевые 2, 5 мм^2.
При зарядке патрона нулевой провод прикрепляют к винтовой гильзе патрона, а фазный - к верхнему контакту патрона (рис. 30).
Патроны для люминесцентных ламп выпускают стоечные, круглые и накидные с корпусами из пластмассы. К контактным зажимам патронов можно присоединять медные провода сечением до 1, 5мм^2.
Как расшифровываются условные обозначения машин постоянного тока серии ?
Первая цифра (2) указывает номер серии; буква (П) - вид машины, т. е. постоянного тока;
вторая буква — исполнение машины в зависимости от способа защиты и охлаждения (Н - защищенное с самовентиляцией, Ф - защищенное с независимой вентиляцией, О - закрытое, обдуваемое, Б - закрытое с естественным охлаждением); последующие две или три цифры (от 90 до 315) -высоту оси вращения в мм; буквы М и L — длину сердечника статора (М - первая длина, L -вторая длина); Г - наличие тахогенератора; У - климатическое исполнение; последняя цифра (4) — категорию размещения по ГОСТ 15150-69.
Например, двигатель 2ПН100МУ4 ГОСТ 20529-75 расшифровывается следующим образом: двигатель серии 2П, защищенного исполнения с самовентиляцией, с высотой оси вращения 100 мм, с первой длиной сердечника статора, климатического исполнения У, категории 4.
Kак устроена стиральная машина?
Промышленность выпускает стиральные машины следующих трех основных типов: СМР — с ручным отжимом; стирка и полоскание механизированы, отжим при помощи двух покрытых резиной валиков; СМП — полуавтоматические, с автоматическим устройством для регулирования времени стирки; стирка, полоскание, отжим, откачка и перекачка жидкости механизированы; СМА — автоматические, у которых стирка, полоскание, отжим, откачка и перекачка жидкости механизированы и автоматизированы.
Как устроены стиральные машины типа СМР? Общий вид и разрез стиральной типа СМР показаны на рисунке 21. На дне стирального бака 2 размещен дисковый активатор 21. На одном валу с активатором внутри корпуса 7 расположен центробежный насос, откачивающий жидкость из бака. Жидкость через сливное отверстие в дне бака, закрытое съемной решеткой 13, поступает по шлангу 10 в насос и через сливной шланг 9,. выведенный из корпуса машины, сливается при стирке снова в бак, обеспечивая тем самым циркуляцию стирающей жидкости. После окончания стирки жидкость по сливному шлангу выводится из машины.
Активатор и насос приводятся в движение асинхронным электродвигателем 19 посредством клиноременной передачи. Электродвигатель установлен на наклонной раме 18, продольные пазы которой позволяют перемещать двигатель и тем самым регулировать натяжение приводного ремня.
Отжимное устройство с двумя валиками 5 и 6, покрытыми резиной, монтируют в кронштейнах
Рис. 21. Стиральная машина типа СМР: а - общий вид; б -разрез; 1 — корпус; 2 — стиральный бак; 3 — отметка уровня заполнения бака; 4 — ручка для переноса машины; 5 и 6 — валики отжимного устройства; 7 —регулировочный винт; 8 — пружина; 9 и 10 — сливной и соединительный шланги; 11 — скоба для намотки электрошнура; 12 — рукоятка отжимного устройства; 13 — решетка; 14 — шнур; 15 — реле; 16 — ролик; 17 — скоба для удержания машины при отжиме; 18 — рама; 19 — электродвигатель; 20 — насос; 21 — активатор
корпуса машины и закрепляют стопорными винтами. Плоская пружина 8 прижимает верхний валик к нижнему.
Усилие пружины изменяют регулировочным винтом 7. Валики вращают съемной рукояткой 12, которую вставляют в ось нижнего валика. Машину включают поворотом ручки реле времени 15. Переносят машину, приподнимая ее за пластмассовые ручки 4. Скоба 17 служит опорой машины и одновременно помогает удерживать ее при отжиме белья. Машину можно перевозить на двух роликах 16. На поверхности бака выдавлено продолговатое углубление 3, указывающее допустимый уровень жидкости. Соединительный шнур 14 после прекращения работы машины наматывают на скобу 11. К числу стиральных машин с ручным отжимом относятся «Волга-8Р» и «Таврия». Они рассчитаны на стирку 1, 5 кг сухого белья. Мощность, потребляемая ими, 350 Вт. У них два режима работы. Габариты машины «Волга-8Р» - 445х498х722 мм, а «Таврии» - 450х470х470 мм. К типу стиральных полуавтоматических машин относятся стиральные машины «Рига-15» с вкладной центрифугой, «Сибирь-6», «Аурика-78», «Золушка-2П», «Сибирь-7Б», «Эврика-3». Их стиральный бак вмещает от 1, 5 до 3 кг сухого белья. Мощность, потребляемая машинами, 500— 600 Вт. У них два режима работы (кроме «Рига-15»). Габариты машин примерно одинаковы и равны 700х400х700 мм. Стиральные машины «Эврика-автомат» (2 кВт), «Кишинев-2» (2, 4 кВт), «Вятка-автомат» (2, 2 кВт) имеют до 12 программ, благодаря которым автоматически заливается, сливается, нагревается вода, замачивается белье, вводится нужное количество моющих средств, полощутся и отжимаются вещи. Для подключения машины требуется разрешение электроснабжающих и коммунальных служб.
Kак устроить электрообогреваемый парник или теплицу?
Устройства элементного обогрева почвы и воздуха различают по конструктивному выполнению нагревательных элементов, их размещению, значению питающего напряжения и пр. Нагревательными элементами служат нагревательные провода и кабели, а также стальной неизолированный провод.
При почвенном обогреве нагревательные элементы располагают следующими способами: в асбоцементных или гончарных трубах диаметром 50— 150 мм, уложенных в песке под питательным слоем почвы (рис. 13, а); непосредственно в слое песка под почвой; в асфальтобетонных монолите или блоках под почвой.
Для обогрева воздуха нагревательные элементы подвешивают на строительных конструкциях сооружений защищенного грунта (непосредственно или в асбоцементных трубах диаметром 50—75 мм (рис. 13, а). К нагревательным элементам подводят напряжение 380/220 В или пониженное 24—17 В.
Нагревательные элементы, проложенные в трубах, защищены от влаги и механических повреждений, их легко ремонтировать и безопасно обслуживать; кроме того, при таком расположении выравнивается температура почвы. Основной недостаток — большой расход труб.
Обогреватели, выполненные в виде асфальтобетонного монолита или асфальтобетонньк либо асфальтокерамзитобетонных плит, имеют большую аккумуляционную способность, равномерно нагревают почву, электробезопасны. Устройство
Рис. 13. Устройство электрообогреваемого парника:
а - ТЭНами; б -с помощью асфальтобетонного монолита; 1 - патрубки; 2 - рама; 3, 4 - элементы воздушного и почвенного обогрева; 5 - почва; 6 - песок; 7 - шлак; 8 - коробка выводов; 9 - асфальтобетонный монолит; 10 - нагревательный элемент; 11 - защитная сетка-экран; 12 - гравий; 13 - грунт
парника со сплошным асфальтобетонным покрытием нагревательного элемента показано на рисунке 13, 6. На грунт насыпают слой шлака, затем песка, на который укладывают асфальтобетон (88% песка, 12% битума). Нагревательный провод или стальную неизолированную проволоку укладывают зигзагообразно и заливают асфальтобетоном, что обеспечивает хорошую электрическую изоляцию. Для питания нагревателя используют напряжение 380/220 В или пониженное.
Как устроить электрообогреваемый пол?
Электрообогреваемые полы состоят из нагревательных проводов, уложенных зигзагообразно с требуемым шагом в слое бетона (рис. 12, а). Экранирующую сетку присоединяют к контуру выравнивания потенциала не менее чем в двух местах.
Рис. 12. Электрообогреваемый пол:
а — схематический разрез; б, в — способы укладки нагревательного провода; 1 — утрамбованный грунт; 2 ~щебень; 3, 6 — бетон, 4, 5 — гидро- и теплоизоляция, 7 — нагревательный провод; 8 — экранирующая сетка
Выходные концы нагревательного элемента протягивают в трубы и подключают к распределительным коробкам. Напряжение питания изолированных нагревательных элементов 220 В; к неизолированным проводам подводят пониженное напряжение через трансформатор.
При применении нагревательного провода ПНВСВ упрощается конструктивная схема бетонного пола, так как не нужна экранирующая сетка. Начиная рассчитывать нагревательные элементы, определяют конфигурацию и площадь обогреваемого участка пола. Если температура поверхности пола должна быть равномерной, провода укладывают с постоянным шагом (рис. 12, б). При необходимости дифференцировать температуру (например, в свиноматочнике) в зависимости от возраста животных принимают переменный шаг укладки (рис. 12, в): больший на площадке для свиноматки, меньший в месте размещения поросят. Рекомендуемые параметры для расчета электрообогреваемых полов приведены в таблице 12.
Таблица 12. Рекомендуемые параметры для расчета электрообогреваемых полов
Вид животных |
Рекомендуемая температура пола,°С |
Поверхностный тепловой поток, Вт/м^2 |
Удельная обогреваемая площадь пола, м^2 /гол. |
Рекомендуемый шаг укладки нагревательного провода,м |
Цыплята |
35-40 |
150-300 |
0,015-0,08 |
0,05-0,1 |
Поросята |
25-30 |
100-200 |
1-1,5* |
0,1-0,15 |
Свиньи на откорме |
18-20 |
80-150 |
2, 25 |
0,15-0,2 |
Телята |
20-24 |
100-150 |
1. 5 |
0,1-0,15 |
Коровы, больные маститом или артритом) |
26-29 |
150-200 |
|
0,15-0,2 |
* На приплод
Как включить трехфазный электродвигатель в однофазную сеть?
Наиболее распространенные схемы включения с использованием конденсаторов показаны на рис. 6.
Напряжение сети подводят к началам двух фаз. К началу третьей фазы и одному из сетевых зажимов присоединяют рабочий конденсатор Ср и отключаемый (пусковой) Сп, применяемый для увеличения пускового момента.
Если пуск двигателя происходит без нагрузки, то конденсатор Сп не используется. После пуска двигателя пусковой конденсатор отключают.
Изменяют направление вращения (реверсирование) путем переключения сетевого провода с одного зажима конденсатора на другой.
Рабочая емкость пропорциональна мощности двигателя (номинальному току) и обратно пропорциональна напряжению.
Для схемы рис. 6, а
Ср = 2800*Iном/U
Для схемы рис. 6, б
Ср = 4800* Iном/U
где Ср — рабочая емкость для номинальной нагрузки, мкФ;
Iном — номинальный ток, А;
U — напряжение однофазной сети, В.
За номинальные ток и напряжение принимают
Рис. 6. Схемы включения трехфазного электродвигателя в однофазную сеть: а — при помощи конденсаторов при включении электродвигателя в звезду; б — при помощи конденсаторов при включении электродвигателя в треугольник; в — при помощи активного сопротивления при включении электродвигателя в треугольник; г — при помощи активного сопротивления при включении электродвигателя в звезду; QS — включающее устройство (рубильник); FU — предохранители; SB — пусковая кнопка; Ср, Сп — соответственно рабочий и пусковой конденсаторы
фазные значения величин, указанных в паспорте электродвигателей.
В качестве рабочих могут применяться конденсаторы типов КБГ-МН (конденсатор бумажный, герметический, в металлическом корпусе, нормальный), БГТ (бумажный, герметический, термостойкий), МБГЧ (металлобумажный, герметический, частотный).
При определении пусковой емкости исходят из пускового момента. Если пуск двигателя происходит без нагрузки, пусковой емкости не требуется. Чтобы получить пусковой момент, близкий к номинальному, достаточно иметь пусковую емкость, определяемую соотношением Сп = (2, 5 - 3) Ср.
Отключаемые (пусковые) конденсаторы работают несколько секунд при включении, поэтому используют более дешевые электролитические конденсаторы типа ЭП.
Напряжение конденсатора для приведенных схем
Uк = Uc,
где Uк — напряжение на конденсаторе при номинальной нагрузке, В; Uc — напряжение сети, В.
При работе двигателя с недогрузкой Uк= 1, 15 Uc.
Номинальное напряжение конденсаторов типов КБГ-МН и БГТ дается для работы на постоянном токе.
При работе их на переменном токе величина допустимого напряжения не должна превышать значений, указанных в таблице 3. При ремонте и после каждого отключения конденсатор разряжают с помощью какого-либо сопротивления. Разрядным сопротивлением могут служить несколько ламп накаливания, соединенных последовательно. Для включения и защиты от перегрузок конденсаторного двигателя используют магнитные пускатели с тепловыми реле. Таблица 3. Величины допустимых напряжений
Номинальное напряжение постоянного тока, В | Допустимое напряжение переменного тока В, при частоте 50 Гц и емкости конденсатора, мкФ | |
До 2 | 4-10 | |
400 | 250 | 200 |
600 | 300 | 250 |
1000 | 400 | 350 |
1500 | 500 | - |
Наилучшие эксплуатационные показатели дают трехфазные двигатели, включенные в однофазную сеть, где в качестве пускового сопротивления используют емкость. Величина номинальной мощности достигает 65 — 85 % от мощности, указанной на щитке трехфазного электродвигателя. Однако конденсаторы с нужными параметрами не всегда бывают в хозяйствах. В этом случае можно воспользоваться способом включения трехфазного двигателя с помощью активных сопротивлений. Перед пуском двигателя включают пусковое сопротивление. Затем двигатель подключают к однофазной сети. Когда двигатель достигнет частоты вращения, близкой к номинальной, пусковое сопротивление отключают. Двигатель продолжает работать, развивая мощность, равную 0, 5 — 0, 6 номинальной (в трехфазном режиме). Для изменения направления вращения ротора (реверсирования) меняют местами выводы пусковой ветви обмотки (С6 подсоединяют к С1 и рубильник В — к С2 или С6 — к сопротивлению Rп, а С5 — к С2). Перед реверсированием двигатель отключают от сети. Если трехфазный электродвигатель включен в однофазную сеть по схеме, показанной на рис. 6, б, то пусковой момент будет почти вдвое меньше, чем при включении по схеме, показанной на рис. 6, а. Для реверсирования электродвигателя, включенного по схеме на рис. 6,б, необходимо поменять местами выводы С2 и С5 пусковой обмотки. Значение пусковых активных сопротивлений выбирают по таблице 4 в зависимости от мощности электродвигателя в трехфазном режиме. Таблица 4. Величины пусковых сопротивлений
Мощность двигателя, кВт | Пусковое сопротивление, Ом, по схеме (рис. 6, а) | Мощность двигателя, кВт | Пусковое сопротивление, Ом, по схеме (рис. 6, 6) |
0, 6 | 25-30 | 0, 6; 1, 0 | 8-15 |
1, 0 | 20-25 | 1, 7; 2, 8 | 3-4 |
1, 7 | 10-15 | 4, 5 | 1, 5-3 |
2, 8 | 5-10 | 7; 10 | 1-2 |
4, 5; 7, 0 | 3-5 | . | - |
Пусковые активные сопротивления можно легко изготовить в производственных условиях. В качестве проводников используют фехраль (табл. 5), нихром, константан и другие материалы, а в качестве изолятора — цилиндр из керамиковых материалов или асбоцемента. При изготовлении пусковых активных сопротивлений следует иметь в виду, что во время пуска по сопротивлению будет кратковременно протекать ток, который в пять раз может превышать Таблица 5. Величины пусковых сопротивлений из фехраля
Номинальная мощность двигателя в трехфазном режиме, кВт | Пусковое сопротивление, Ом | Размеры проводника | |
диаметр, мм | длина, м | ||
0, 6 | 30 | 1, 3 | 28 |
1, 0 | 20 | 1, 5 | 28 |
1, 7 | 10 | 1, 7 | 19 |
2, 8 | 7 | 2, 0 | 18 |
4, 5 | 5 | 2, 5 | 24 |
номинальный ток в трехфазном режиме. Учитывая, что пусковое сопротивление обтекается током при пуске лишь в течение нескольких секунд, для указанных материалов допустимая плотность тока при пуске равна 10 А/мм^2 — для проволок диаметром 0, 1 — 0, 5 мм; 8 А/мм^2 — для проволок, диаметр которых более 1, 5 мм.
Как выполнить
соединение, оконцевание жил провода (кабеля) и подключение к зажимам аппаратов?
Соединение алюминиевых жил должно быть выполнено опрессовкой или сваркой, допускается соединение проводников пайкой. Провода сечением более 10 мм^2 запрещается соединять скруткой.
Опрессовку алюминиевых проводов производят следующим образом. Концы проводов освобождают от изоляции, зачищают металлической щеткой или ножом до блеска и вводят в алюминиевую гильзу, наполненную цинковазелиновой или кварцевазелиновой пастой. Гильзу с проводами опрессовывают клещами. Опрессовку предварительно скрученных однопроволочных жил сечением 2, 5 — 10 мм^2 можно производить специальными клещами типа КСП без применения гильзы и пасты.
Сварку алюминиевых проводов и кабелей сечением 4—10 мм^2 производят специальными клещами. Напряжение 6—12 В подводят от трансформатора мощностью 0, 5—1 кВА. Ток сварки (до 100 А) регулируют переключением отпаек трансформатора. Сварку производят с применением флюса АФ-44 угольным электродом при помощи обжимки и плоскогубцев (рис. 35, а) или скруткой с последующей сваркой угольным электродом (рис. 35, б).
Многопроволочные алюминиевые провода сечением 16—25 мм^2 соединяют сваркой при помощи специальной разъемной формы, угольного электрода, паяльной лампы или горелки и присадочного алюминиевого прутка.
Припайке проводов сечением 4—10мм^2 снимают изоляцию с концов жил, зачищают их ножом, стальной щеткой или наждачной бумагой до блеска и скручивают. Место соединения нагревают пламенем горелки или паяльной лампы и облуживают специальными припоями типа А, Б и кадмиевым. Флюс при этом не нужен. При применении мягких припоев типа АВИА-1 и АВИА-2 (температура плавления 200°С) применяют флюс АФ-44. Места пайки обязательно очищают от остатков флюса, протирают бензином, покрывают влагонепроницаемым (асфальтовым) лаком, а затем изоляционной лентой, которую также покрывают лаком.
Медные однопроволочные и многопроволочные провода сечением до 10 мм2 соединяют скруткой (рис. 35, в, г) с последующей пропайкой места соединения припоями ПОС-30 (30% олова и 70% свинца), ПОС-40 и канифолью в качестве флюса.
Применять кислоту или нашатырь при пайке нельзя. Места соединения скруткой должны быть длиной не менее 10—15 наружных диаметров соединяемых жил. Опрессовку медных проводов производят следующим образом. Провода зачищают от изоляции на длину 25—30 мм и укладывают параллельно внахлестку. Сложенные концы туго обертывают двумя слоями медной фольги толщиной 0, 2—0, 3 мм и спрессовывают. При качественно выполненной опрессовке провода и фольга не имеют обрывов. Оконцевание проводов под винтовой зажим осуществляют в виде кольца, а под плоский зажим — в виде стержня (рис. 36, а). При сечении провода до 4 мм^2 включительно оконцевание в виде кольца выполняют следующим образом. С конца провода снимают изоляцию на
Рис. 35. Соединение проводов: а — сваркой алюминиевых проводов при помощи обжимки и плоскогубцев; б — сваркой предварительно скрученных медных или алюминиевых жил при помощи угольного электрода; в — скруткой и облуживанием медных или алюминиевых жил; г ~ скруткой и пропайкой медных, многопроволочных жил; 1— держатели электродов; 2 — угольные электроды длине, достаточной для выполнения кольца. Жилу жесткого провода закручивают в кольцо по часовой стрелке, а гибкого провода — в стержень, а затем в кольцо и облуживают (рис. 36, б, в). Оконцевание провода в виде стержня производят следующим образом: с конца провода удаляют изоляцию; для гибкого провода стержень скручивают и облуживают. При сечении жил 6 мм^2 и больше оконцевание. Производят кабельными наконечниками. Лучшим способом оконцевания является оконцевание наконечниками типа Т (трубчатый), ТА (трубчатый алюминиевый) и ТАМ (трубчатый медно-алюминиевый) способом местного вдавливания пресс-клещами ПК-1 для жил сечением до 50 мм^2.
Рис. 36. Оконцевание жил проводов под винтовой и плоский зажимы: а — жесткий провод; б, в — гибкий провод Особенность опрессования. оконцеваний и соединений алюминиевых жил в отличие от медных заключается в применении кварцевазелиновой пасты, а также в выполнении наконечников и соединительных гильз из чистого алюминия с увеличенными в длину и толщину стенками трубчатой части и большей площадью опрессования. Переход между трубчатой частью кабельного наконечника и изоляцией провода изолируют полихлорвиниловой трубкой или лентой. Присоединению проводов к зажимам аппаратов должно предшествовать оконцевание провода (в виде кольца или стержня). Присоединение к одному контактному зажиму более 2 проводов запрещается.
Зажимы должны соответствовать величине номинального напряжения и тока. Зажимные винты рассчитаны на присоединение проводов следующих сечений: в зажимах до 10 А — двух проводов сечением до 4 мм^2 без наконечников; в зажимах до 25 А — двух проводов сечением до 6 мм^2 без наконечников; в зажимах до 60 А - двух проводов сечением до 6 мм^2 без наконечников и одного провода сечением 10 или 16 мм^2 с наконечником. Винтовой зажим, к которому присоединяются алюминиевые жилы, должен иметь устройство, ограничивающее возможность раскручивания колечка и не допускающее ослабления контактного давления вследствие текучести алюминия. Колечко алюминиевого однопроволочного провода перед вводом под контакт зачищают и смазывают кварцевазелиновой или цинковазелиновой пастой. На присоединяемые провода надевают хлорвиниловые трубки, на которые дихлорэтановыми чернилами наносят маркировку провода. Присоединение проводов к аппаратам, имеющим контактные лепестки, производят пайкой. Спаянные монтажные соединения должны обеспечивать надежность электрического контакта и необходимую механическую прочность. Основным материалом для пайки является припой ПОС-40, а для ответственной аппаратуры — ПОС-61. Припой рекомендуется применять в виде трубок с канифольным наполнением или проволоки диаметром 1—3 мм. Флюсом служит раствор канифоли в спирте, а также канифоль сосновая высшего или первого сорта.
Как высушить изоляцию обмоток?
Сопротивление изоляции обмотки статора между фазами и между фазами и корпусом, измеренное мегаомметром, должно быть не менее 0, 5 МОм. В случае значительного снижения сопротивления изоляции обмотки двигателя ее нужно подсушить внешним нагревом, методом потерь в стали или током короткого замыкания. Внешний нагрев применяют в том случае, если машина сильно отсырела. Для этого изоляцию обмоток обдувают горячим воздухом (рис. 5, а), используя воздуходувки с калориферами, лампы накаливания и нагревательные сопротивления. Мощность нагревательных элементов 3—10 кВт. Одновременно можно пропускать через обмотки ток. Величину тока при этом поддерживают в пределах 0, 4 — 0, 7 номинального тока электродвигателя. Для быстроходных двигателей (выше 1000 об/мин) берут нижние пределы тока, а для тихоходных (ниже 1000 об/мин) — более высокие значения тока.
Необходимое количество воздуха в минуту должно быть равно полуторному объему камеры, в которой сушат электродвигатель. Мощность нагревательного элемента в киловаттах должна быть численно равна объему камеры в кубических метрах. Если объем камеры для сушки двигателя равен 8м^3, то объем горячего воздуха, который надо пропускать в одну минуту через эту камеру, должен составлять 12 м^3, а мощность электронагревательного элемента — 8 кВт.
Для сушки изоляции обмоток током короткого замыкания (рис. 5, б) обмотки отдельных фаз замыкают накоротко и подают к ним пониженное
Рис. 5. Сушка изоляции электродвигателей: а —в камере с использованием воздуходувки; б —током короткого замыкания; в—при помощи специальной намагничивающей обмотки
напряжение. Источником напряжения при этом обычно служат сварочные трансформаторы.
Сверху электродвигатель покрывают теплоизолирующим материалом. Ток в обмотках статора доводят до 50% от номинального и поддерживают его на этом уровне 2 — 3 ч. В течение последующих 3 ч (с интервалами в 20 — 30 мин) ток доводят до 90% номинального. В первые 3 — 5 ч температура обмоток не должна превышать 40 —50°С, после 8 — 10 ч сушки — 60 — 70°С.
При этом температура выходящего воздуха не должна быть выше 50°С, а температура изоляции обмотки не должна превышать 70°С. Через каждые 2 ч проверяют термометром температуру обмоток и измеряют мегаомметром сопротивление их изоляции. Процесс сушки электродвигателя можно считать законченным, если при температуре горячего воздуха 50 — 60°С сопротивление изоляции будет оставаться неизменным в течение 3 — 5 ч. Для сушки изоляции обмоток статора электродвигателя любой мощности можно использовать потери мощности на вихревые токи в активной стали. Эти токи образуются в результате создания в стали статора переменного магнитного поля с помощью специальной обмотки (рис. 5, в). Намагничивающий ток выбирают в пределах 60 — 200 А, а число витков обмотки от 6 до 28. Напряжение на один виток обмотки 3 — 4, 5 В. Источником энергии служат сварочные трансформаторы. В начале сушки надо ускорить подъем температуры, а потом снизить ее до такого уровня, который необходим лишь для того, чтобы потери в стали покрывали потери тепла. Для этого обычно снижают подводимое напряжение или увеличивают число витков намагничивающей обмотки. Для сушки изоляции обмоток электродвигателя можно применять лампы инфракрасного излучения с зеркальными отражателями или обычные электрические лампы. Лампы монтируют в сушильном шкафу. Температуру воздуха в нем поддерживают в пределах 100 — 110°С. Для сушки обмоток можно применять переменный ток пониженного напряжения (в 3 — 5 раз меньше номинального). Ток в обмотке статора регулируют так, чтобы температура ее не превосходила 60 — 75°С. Продолжительность сушки небольших электродвигателей 8 — 12 ч.
Какие бывают электрические двигатели и где они применяются?
Электрические двигатели бывают постоянного и переменного тока (рис. 2). Наиболее распространены электрические двигатели переменного тока. Они просты по устройству, неприхотливы в эксплуатации. Основной недостаток — практически не регулируемая частота вращения.
Электрические двигатели переменного тока изготавливают одно- и многофазными. Основные элементы таких двигателей — статор (неподвижная часть) и ротор (вращающаяся часть). Выпускаются электродвигатели с коротко замкнутыми обмотками ротора (типа беличьей клетки) и обмотками, выведенными на коллектор (систему контактных колец) и замыкающимися через регулируемые резисторы. Такие роторы называют фазными, а электродвигатели — электродвигателями с фазным ротором.
Электрические двигатели переменного тока применяют для привода рабочих машин различного назначения (насосы, деревообрабатывающие станки, дробилки и т. д.), не требующих регулирования частоты вращения. Выпускаются на мощности от 0, 2 до 200 и более киловатт.
Электродвигатели постоянного тока состоят из подвижной части (якоря) и неподвижной части (статора). Они выпускаются с параллельным, последовательным и смешанным соединением обмоток якоря и статора. Достоинством двигателей постоянного тока является способность регулировать частоту вращения, но они требуют значительных усилий при эксплуатации.
Универсальные коллекторные двигатели при-
Рис. 2. Электрические двигатели: а — постоянного тока; б — синхронные; в ~ асинхронные с фазным ротором; г — асинхронные трехфазные с коротко замкнутым ротором серии 4А. 1 — вал, 2 ~ шпонка, 3 —подшипник, 4 — статор, 5 — обмотка статора, 6 — ротор (якорь); 7 — вентилятор; 8 — коробка выводов; 9 — лапа, 10 — коллектор; 11 — щетки; l1, l2 — продольное и поперечное расстояния в лапах; l3 — длина выступающего конца вала; l4. — размер выступающей крышки; h — высота оси вращения; d1, d2 — диаметры вала и отверстий в лапах.
меняются в промышленных и бытовых электроустановках (электрифицированный инструмент, вентиляторы, холодильники, соковыжималки, мясорубки, пылесосы и др.).
Они рассчитаны для работы как от сети постоянного тока (110 и 220 В), так и от сети переменного тока частотой 50 Гц (127 и 220 В). Эти двигатели имеют большой пусковой момент и сравнительно малые размеры. По своему устройству универсальные коллекторные двигатели принципиально не отличаются от двухполюсных двигателей постоянного тока с последовательным возбуждением. В универсальных коллекторных двигателях не только якорь набирается из листовой электротехнической стали, но и неподвижная часть магнитопровода (полюса и ярмо). Обмотка возбуждения этих двигателей включается с обеих сторон якоря. Такое включение (симметрирование) обмотки позволяет уменьшить радиопомехи, создаваемые двигателем. Для получения примерно одинаковых частот вращения при номинальной нагрузке как на постоянном, так и на переменном токе обмотку возбуждения выполняют с ответвлениями: при работе двигателя от сети постоянного тока обмотку возбуждения используют полностью, а при работе от сети переменного тока — лишь частично. Вращающий момент создается за счет взаимодействия тока в обмотке якоря (ротора) с магнитным потоком возбуждения. Эти двигатели выпускаются на сравнительно небольшие мощности — от 5 до 600 Вт (для электроинструмента — до 800 Вт) и частоты вращения — 2770 — 8000 об/мин. Пусковые токи таких двигателей невелики, поэтому их в сеть включают непосредственно без пусковьк сопротивлений. Универсальные коллекторные двигатели имеют минимум четыре вывода: два для подключения к сети переменного тока и два для подключения к сети постоянного тока. КПД универсального двигателя на переменном токе ниже, чем на постоянном. Это вызвано повышенными магнитными и электрическими потерями. Величина тока, потребляемого универсальным двигателем при работе на переменном токе, больше, чем при работе этого же двигателя на постоянном токе, так как переменный ток помимо активной составляющей имеет еще и реактивную составляющую. Частоту вращения таких двигателей регулируют, изменяя подводимое от сети напряжение, например, автотрансформатором, а у двигателей небольшой мощности — реостатом. Однофазный коллекторный двигатель нельзя пускать в ход при малой нагрузке, потому что он может пойти «вразнос». Отечественная промышленность выпускает универсальные коллекторные двигатели серий УЛ, МУН, УМТ, ДТА-4, УВ, М-1Д, ЭП, УД, Д2-03, ЭПП-1 и др.
Какие электрические приборы применяют для приготовления пищи?
При использовании электронагревательных приборов для приготовления пищи значительно улучшаются санитарно-гигиенические условия в помещении. Такие устройства менее взрыво- и пожароопасны, чем плиты на твердом, газообразном и жидком топливе. Установленная мощность в квартире увеличивается в 1, 5—2 раза, расчетная мощность ввода составляет 5—5, 5 кВт, потребление электроэнергии доходит в среднем до 1500 кВт-ч на семью в год.
К электронагревательным устройствам для приготовления пищи относят микроволновые печи СВЧ-нагрева, напольные и настольные электроплиты, жарочные шкафы и специализированные приборы.
Микроволновые печи предназначены для приготовления, разогревания, размораживания, термостатирования продуктов. Магнетрон генерирует электромагнитное излучение с частотой 2300—2500 МГц, которое передается по волноводу в рабочую камеру печи и там поглощается нагреваемым продуктом. При прямом объемном нагреве токами СВЧ сокращается продолжительность приготовления блюд, повышается их качество и сохранность, снижается угар жиров.
Выпускают печи нескольких типов, в том числе «Электроника-СП23» и «Электроника-ЗС». Потребляемая мощность 1320 Вт. Мощность СВЧ-колебаний 550 кВт.
Рис. 14. Микроволновая печь «Электроника-3С»: 1 - волновод; 2 - магнетрон; 3 - вентилятор; 4 - трансформатор; 5 - панель с электроаппаратурой; 6 - блок управления; 7 - тарелка; 8 - дверь; 9 - камера
Kак устроены электрические плиты?
Напольные и настольные электроплиты различают по типу, числу конфорок и номинальной мощности.
Наиболее распространены штампованные конфорки (КПД 0, 5-0, 6; срок службы 3 тыс. ч), представляющие собой корпус из листовой стали, заполненный электроизоляционным материалом, в который впрессованы две нагревательные спирали мощностью 400 Вт каждая.
Чугунные конфорки (КПД 0, 65—0, 7; срок службы 4 тыс. ч) — это отливки, имеющие пазы с электроизоляционной массой, в которую впрессованы две или три спирали из нихрома Х20Н80. Общая мощность 1000 или 1200 Вт.
Трубчатые конфорки (КПД 0, 72—0, 74; срок службы 5 тыс.
ч) выполняют из согнутых трубчатых нагревателей (в виде одного или нескольких витков спирали Архимеда). Работают при температуре нержавеющей оболочки ТЭНа 650—750 С. Большинство конфорок содержит два двухконцевых ТЭНа мощностью 480 и 550 Вт. Мощность электроплит регулируют четырех-пяти- или семипозиционными переключателями. Несущей конструкцией электроплиты является рама (рис. 15), состоящая из передней и задней стенок, корпуса жарочного электрошкафа и основания, сваренных точечной сваркой. Боковые стенки крепятся к раме при помощи винтов. Панель управления крепится к раме с помощью самонарезных винтов. Цветной эмалью на панели управления нанесены цифровые обозначения положений семипозиционных переключателей, числа — указатели температуры жарочного электрошкафа,
Рис. 15. Электрическая плита: а — конструктивная схема; б — электрическая схема: 1 — сигнальные лампы; 2 — ручки переключателей мощности; 3, 5, 9, 10 — электроконфорки; 4 —рабочий стол; б— розетка; 7 — переключатель клавишный; 8 — дверка жарочного шкафа; 11 — вспомогательный шкаф; 12 — основание рамы; Э1, Э2, ЭЗ, Э4 — электроконфорки; П1—П5 — переключатели; HL1—HL6 — сигнальные лампы; HL0 — осветительная лампа (подсветка); ТЭН1-ТЭНЗ -нагреватели духовки; Т° - датчик температуры обозначение гриля, мнемознаки, обозначающие расположение электроконфорок на рабочем столе, обозначение вертела и лампы освещения жарочного электрошкафа. Рабочий стол, с установленными на нем четырьмя чугунными электроконфорками, смонтирован на раме при помощи шарниров, что позволяет приподнимать его для осмотра, монтажа, демонтажа электроконфорок и переключателей. В приподнятом положении рабочий стол удерживается штоком, закрепленным с правой стороны рамы. Углубление рабочего стола предназначено для сбора небольшого количества пролитой жидкости. Специальные отводы предупреждают попадание пролитой жидкости внутрь электроплиты. После окончания пользования электроплитой рабочий стол закрывается крышкой. В открытом положении крышка предохраняет стенку кухни от забрызгивания. Электроконфорки излучающего типа выполнены из чугуна и имеют по три спирали, что позволяет регулировать мощность в больших пределах.
Крепление электроконфорок производится с обратной стороны рабочего стола при помощи скоб. Регулирование мощности электроконфорок производится при помощи семипозиционных переключателей. Ручки переключателей расположены на панели управления. Расположение ручек переключателей показано на рис. 15. Семипозиционные переключатели мощности электроконфорок имеют круговое вращение. Трехпозиционный переключатель жарочного электрошкафа имеют три положения: «О» — отключено; включены нагревательные элементы жарочного электрошкафа; включен гриль. Ручка трехпозиционного переключателя жарочного электрошкафа не имеет кругового вращения. Трехпозиционный клавишный переключатель имеет три положения: нейтральное; включен моторедуктор; включена лампа освещения жарочного электрошкафа. Внутренняя поверхность жарочного электрошкафа покрыта черной эмалью. Четыре направляющих паза внутри жарочного электрошкафа предназначены для установки на желаемом уровне противней или решетки. С наружной стороны жарочный электрошкаф имеет тепловую изоляцию. Дверка жарочного электрошкафа застеклена термостойким стеклом, что позволяет визуально контролировать готовность приготовляемой пищи. Крепление дверки жарочного электрошкафа к корпусу электроплиты выполнено с помощью специальных петель, которые позволяют фиксировать ее в трех положениях: закрыто, открыто, промежуточное. В жарочном электрошкафу установлены три трубчатых электронагревателя. Два из них, верхний и высокотемпературный (гриль), установлены в верхней части жарочного электрошкафа, а нижний — под днищем. Крепление ТЭНа к задней стенке корпуса электроплиты производится с помощью специальных пластин. Включение нагревательных элементов жарочного электрошкафа или гриля производится ручкой трехпозиционного переключателя, расположенной с левой стороны панели управления, при этом ручка переключателя вращается по часовой стрелке до нужного значения температуры жарочного электрошкафа или до обозначения гриля. Одновременное включение нагревательных элементов жарочного электрошкафа и гриля невозможно.
Выключение нагревательных элементов жарочного электрошкафа, а также гриля производится вращением ручки трехпозиционного переключателя против часовой стрелки до положения «О». Моторедуктор смонтирован с наружной стороны задней стенки электроплиты и предназначен для вращения вертела с частотой 2 об/мин при приготовлении на нем пищи. Включение и выключение моторедуктора производится клавишным переключателем, расположенным с правой стороны панели. В процессе приготовления пищи вертел заостренным концом вставляется в воронку, жестко насаженную на вал моторедуктора и выведенную в жарочный электрошкаф. Второй конец вертела опирается на рамку. Розетка расположена на панели управления и крепится к ней с обратной стороны при помощи пружинной пластины. Розетка предназначена для включения бытовых электроприборов мощностью до 1 кВт, при этом максимальный ток при всех включенных нагревателях составит 41 А. Специализированные приборы с инфракрасными нагревателями — это электрошашлычницы, электрогрили, ростеры и тостеры. В качестве ИК-излучателя применяют высокотемпературные ТЭНы или кварцевые излучатели, представляющие собой трубку из кварцевого стекла диаметром 20 мм с толщиной стенки 1 мм. В трубку помещен керамический стержень диаметром 19 мм с укрепленной в пазах нагревательной спиралью из нихромовой проволоки. Температура поверхности такого излучателя 850°С.
Какие электрифицированные машины используют в кормоприготовлении для подсобного хозяйства?
Универсальный измельчитель кормов КУ-4 с помощью набора сменных рабочих органов позволяет дробить зерно, перерабатывать солому и Корнеплоды, лущить початки кукурузы. Мощность электропривода установки 600 Вт. Производительность измельчителя на резке соломы 90 кг/ч, зерна 20 кг/ч.
Бытовой измельчитель кормов ИБК-1 имеет электродвигатель мощностью 600 Вт. Его производительность на резке соломы 90 кг/ч и зерна 20 кг/ч.
Зернодробилки ДЗТ-Т-1 и ДЗ-Т-1 снабжены электродвигателями мощностью по 600 Вт. Их производительность соответственно 75 и 40 кг/ч зерна.
Электродробилки пищевых отходов ЭД-Т-1 также приводит в действие электродвигатель мощностью 600 Вт. Производительность 50 кг/ч.
Электрокорнеплодорезка ЭКР-1 измельчает корнеплоды на ломтики. Мощность электропривода 280 Вт. Производительность машины 150—300 кг/ч.
Универсальная бытовая машина Э-270 предназначена для приготовления кормов и выполнения деревообрабатывающих работ. Используя ее, можно измельчать солому и сено, резать корнеплоды, дробить зерно, лущить початки кукурузы, распиливать, строгать и фрезеровать древесину. Базовая машина имеет электродвигатель мощностью 1, 1 кВт. Частота вращения вала электродвигателя 1450 об/мин.
Все перечисленные машины включают в однофазную сеть напряжением 220 В.
Какие электрифицированные аппараты применяют для дойки коров?
Для дойки коров используют индивидуальный доильный агрегат АИД-1, который входит в комплект оборудования ОК-1. Чтобы доильный агрегат работал, необходима вакуумная установка, состоящая из вакуум-насоса и электродвигателя мощностью 0, 6 кВт и напряжением 220 В.
Агрегат в работу можно включать только при надежном заземлении электрооборудования и установке аппарата защитного отключения.
Какие инкубаторы применяют в личных подсобных хозяйствах?
Практически используют инкубаторы двух типов: «Наседка» и ИПХ-5. Бытовой инкубатор «Наседка» рассчитан на инкубацию 48 куриных яиц. Потребляемая мощность 190 Вт, напряжение сети 220 В. Расход электроэнергии за один цикл инкубации 60 кВт*ч.
В малогабаритном настольном инкубаторе ИПХ-5 можно одновременно выводить цыплят из 50 яиц.
Потребляемая мощность 85— 100 Вт, напряжение сети 220 В. Какие электрические насосы применяют в подсобном хозяйстве? Электрический насос состоит из двух основных частей: электродвигателя и лопастного центробежного насоса. Рабочее колесо вместе с лопастями центробежного насоса заключено в корпус и соединено с валом электродвигателя. При вращении рабочего колеса вода, заполняющая насос, под действием центробежной силы выбрасывается из корпуса, выполненного в виде улитки, в напорный трубопровод и подается в резервуар или на раздачу. Во время вращения рабочего колеса во всасывающем патрубке насоса создается вакуум, за счет которого вода непрерывно поступает во всасывающий трубопровод. Насосы центробежного типа могут работать только в том случае, если рабочее колесо, а следовательно, и всасывающий трубопровод заполнены водой. Поэтому, чтобы удержать воду внутри насоса при его остановке, на конце всасывающего трубопровода смонтировано приемное устройство с обратным клапаном. Если насос запускается в работу впервые или после ремонта, то в корпус насоса предварительно заливают воду. У сельского населения наиболее распространены малогабаритные центробежные насосы «Кама», «Агидель», «Урал», ЦМВБ-1, 6-15, БЦНМ-3, 5/17, БЦНМ-4/17, 1СЦВ-1, 5 и ВС-0, 5/18М. Помимо центробежных насосов, сельское население применяет насосы вибрационного типа. Принцип их действия основан на использовании электромагнитных колебаний, передаваемых клапану-плавнику. При сравнительно небольшой потребляемой мощности (250 Вт) и малой массе подача такого насоса достигает 1, 5 м^3/ч при полном напоре 20 м. Электронасос «Кама» (рис. 22) объединяет электродвигатель и лопастный центробежный насос. Электрический двигатель типа УЛ-06 коллекторный, универсальный, снабжен специальным помехоподавляющим устройством. Его мощность 330 Вт, частота вращения 5000 мин^-1. Включать насос без нагрузки нельзя, так как частота вращения двигателя может возрасти до недопустимого значения. Основные части центробежного лопастного насоса — корпус и рабочее колесо.
В комплект входит приемное устройство с обратным клапаном. Корпус насоса разъемный. При разборке насоса для осмотра или ремонта рабочего колеса всасывающий трубопровод демонтировать не нужно. Электродвигатель к насосу крепят болтами с пружинными шайбами. Вал, выходящий из насоса, уплотнен сальником, состоящим из двух резиновых манжет, вставки между ними, двух шайб и стягивающей гайки. Для гидравлического уплотнения в сальник подается вода из напорной полости через специальный канал в крышке насоса. Кожух защищает двигатель от попадания воды сверху. Рабочее колесо насоса состоит из двух склепанных между собой дисков — верхнего и нижнего. Верхний диск снабжен лопатками, нижний придает рабочему колесу требуемую жесткость. Рабочее колесо закреплено на валу электродвигателя. Чтобы удержать воду в насосе и во всасывающем трубопроводе, предусмотрено приемное устройство с фильтром и обратным клапаном, соединенное резьбой с концом всасывающей трубы. Приемное устройство устанавливают вертикально, так как обратный клапан закрывается под действи-
Рис. 22. Электронасос «Кама»: 1 - подставка; 2 - основание корпуса; 3 - прокладка; 4 - помеха- подавляющее устройство; 5 - электродвигатель; 6 - крышка насоса; 7 - сальник; 8 - рабочее колесо; 9 - приемное устройство ем собственного веса. При работе насоса вода выбрасывается рабочим колесом через нагнетательное отверстие в напорный трубопровод. Часть воды перетекает обратно во всасывающий патрубок через зазоры между выступами рабочего колеса и расточками в крышке и корпусе насоса. Эти зазоры не должны быть больше 0,15 мм. Сельские жители используют два типа этих насосов: «Кама-3» и «Кама-5». У них одинаковые габариты (диаметр 200 и высота 300 м) и масса (5,3 кг). Насосы рассчитаны на напор 17 м. У насоса «Кама-3» максимальная высота всасывания 6 м и подача 1,5 м^3/ч, у насоса «Кама-5» высота всасывания 7 м и подача 1,3—1,5 м^3/ч. Принцип действия объемно-инерционных насосов с электромагнитным вибрационным приводом основан на использовании электромагнитных колебаний, передаваемых клапану-плавнику.
При максимальном напоре до 40 м подача насосов составляет 1,5 м^3/ч. Их мощность до 250 Вт. Электромагнитный бытовой насос «Малыш» (рис.23) предназначен для подъема воды из трубчатых скважин диаметром 100 мм. При работе насос должен быть полностью погружен в воду. Однотипный насос НЭБ-1/20 предназначен для скважин диаметром не менее 200 мм. Эти насосы питаются от однофазной сети напряжением 220 В. Время непрерывной работы до 2 ч с последующим отключением на 15—20 мин. Вибрационный электронасос «Родничок» поднимает воду с глубины до 20 м, а «Струмок» — с глубины до 40 м. Насос «Струмок» по своим параметрам не отличается от насоса «Малыш». Мощность насоса «Родничок» 300 Вт, подача 0,5 м^3/ч.
Рис. 23. Установка электронасоса «Малыш»: а - в колодце; б - в обсадной трубе; 1 - насос; 2 - связка провода со шлангом; 3 - капроновая подвеска; 4 - пружинная подвеска из резины; 5 - провод; 6 - шланг; 7 - перекладина; 8 - вилка; 9 - кольцо; 10 - обсадная труба
Какие паспортные данные указываются на щитке асинхронного электродвигателя?
Каждый двигатель снабжается техническим паспортом в виде приклепанной металлической таблички, на которой приведены основные характеристики двигателя. В паспорте указан тип двигателя. В нашем случае это двигатель типа 4А100S2УЗ (рис.3): асинхронный электродвигатель серии 4А закрытого исполнения с высотой оси вращения 100 мм, с короткой длиной корпуса, двухполюсный, климатического исполнения У, категории 3.
Заводской N 100592 дает возможность отличить электрическую машину среди однотипных.
Далее приведены цифры и символы, которые расшифровываются следующим образом:
3 ~ — двигатель трехфазного переменного тока;
50 Hz — частота переменного тока (50 Гц), при которой двигатель должен работать;
4, 0 KW — номинальная полезная мощность на валу электродвигателя; cosф=0,89 — коэффициент мощности; A/Y — обмотка статора может соединяться в треугольник или в звезду;
. 220/380V, 13, 6/7, 8А — при соединении обмотки статора в треугольник она должна включаться на напряжение 220 В, а при соединении в звезду — на напряжение 380 В. При этом машина, работающая с номинальной нагрузкой, потребляет 13, 6 А при включении на треугольник и 7, 8 А — при включении на звезду;
S1— двигатель предназначен для длительного режима работы;
2880 об/мин — частота вращения электродвигателя при номинальной нагрузке и частоте сети 50 Гц. Если двигатель работает вхолостую, частота вращения ротора приближается к частоте вращения магнитного поля статора;
КПД = 86, 5% — номинальный коэффициент полезного действия двигателя, соответствующий номинальной нагрузке на его валу;
IP44 — степень защиты. Двигатель изготовлен во влагоморозостойком исполнении. Может работать в среде с повышенной влажностью и на открытом воздухе.
В паспорте указан ГОСТ, класс изоляции обмотки (для класса В предельно допустимая температура 130°С), масса машины и год выпуска.
Рис. 3. Табличка с паспортными данными электродвигателя серии 4А.
Какие применяют электрические санитарно-гигиенические приборы?
Электрические утюги выпускают следующих типов: УТ — с терморегулятором; УТП — с терморегулятором и пароувлажнителем; УТПР — с терморегулятором, пароувлажнителем и разбрызгивателем; УТУ — с терморегулятором, утяжеленный. Их различают по массе (0, 68—2, 5 кг) и мощности (0, 4 и 1 кВт). Температуру нагрева утюга устанавливают лимбом биметаллического терморегулятора.
Электроутюг состоит из подошвы 7 (рис. 18) из алюминиевого сплава с залитым в него трубчатым электронагревателем 2, кожуха 9 из жаростойкой пластмассы, защищенного от нагрева подошвы теплоизолирующей прокладкой 4, ручки 7 и крышки б, изготовленных из ударопрочной пластмассы, соединительного шнура 5 с подвижным вво-
Рис. 18. Электроутюг
дом и сигнальной лампы, информирующей о работе терморегулятора 3. Терморегулятор автоматически поддерживает заданную температуру подошвы.
Приборы мягкой теплоты — это электрические грелки, одеяла, бинты, пледы и др. Они одинаковы по конструкции и отличаются лишь внешним оформлением. На тканой основе располагают зигзагообразный гибкий нагревательный элемент, в цепи питания которого предусмотрен аварийный термовыключатель. Это устройство помещают сначала в изолирующий полиэтиленовый, а затем в декоративный чехол. Большая часть изделий оснащена переключателями для изменения температуры нагрева.
В качестве нагревательных элементов применяют нихромовую проволоку, навитую на асбестовую нить, вплетенную в тканевую основу или расположенную в кремний органической изоляции, а также углеграфитовое волокно, покрытое фторопластовой оболочкой. Рабочая температура нагревательного элемента не превышает 70°С;
Фены предназначены для сушки волос. Состоят из пластмассового корпуса, в котором находятся спираль, натянутая на каркас из фарфора или слюдопласта, вентилятор с электродвигателем, переключатель мощности и аварийный термовыключатель. В ручных фенах теплый воздух направляют непосредственно на волосы, в настольных подают по соединительному шлангу в пластиковый колпак.
Какие применяют электрические устройства для отопления и нагрева воды?
Электроотопление имеет ряд преимуществ перед традиционными видами отопления: удобство эксплуатации, постоянная готовность приборов к работе, надежность, возможность индивидуального терморегулирования. Кроме того, не требуется заготавливать и хранить топливо, уменьшаются расходы на обслуживание. В то же время электроотопление — это самый энергоемкий и дорогой вид электрификации быта. Для обогрева 1 м^2 площади необходима установленная мощность 100— 200 Вт при годовом расходе энергии 5—15 тыс. кВт • ч. Расход электроэнергии для горячего водоснабжения на семью из трех-четырех человек составляет около 2 тыс. кВт • ч в год.
Наиболее распространены переносные электроотопительные приборы мощностью 0, 5—1, 25 кВт. По способу теплопередачи их классифицируют на приборы со свободной (электроконвекторы) и вынужденной (электротепловентиляторы) конвекцией, излучением (электрокамины и ИК-обогреватели), конвекцией и излучением (электрорадиаторы).
Электроконвекторы (рис. 16) предназначены для общего обогрева помещения. В качестве нагревателей используют: спирали из нихрома, закрепленные в несколько рядов на изоляторах; тканые элементы, состоящие из проволоки, вплетенной в нагревостойкую ткань; трубчатые плоские и ребренные нагреватели.
Электрокамины служат для местного обогрева; их делят на функциональные и декоративные.
Рис. 16. Электроконвектор:
1 - корпус; 2 - нагревательный элемент; 3 -ручка; 4 -выключатель; 5 — индикаторная лампа
В декоративные камины входят устройство, имитирующее горение дров, и нагревательный блок. Имитация пламени создается при вращении вертушек различной формы с прорезями, установленных в потоке света, излучаемого на полупрозрачный экран. Нагреватели — ТЭНы или спирали из нихрома, размещенные в трубках из кварцевого стекла.
Электрорадиаторы применяют для общего отопления помещения. Они бывают панельными и секционными. Теплота от трубчатого нагревательного элемента передается корпусу промежуточным теплоносителем — минеральным маслом. Температуру изменяют с помощью встроенного биметаллического регулятора.
Предусмотрено автоматическое отключение нагревателя при температуре корпуса 130°С. Бытовые электроводонагреватели делят на три основные группы: переносные приборы (электрические чайники, самовары; -кипятильники), проточные и аккумуляционные водонагреватели. Аккумуляционные водонагреватели низкого давления типа ЭВАН (рис. 17) с трубчатым нагревательным элементом мощностью 1, 24 кВт устанавливают в ванной комнате. При вместимости устройства 10, 40 и 100 л вода нагревается до максимальной температуры в течение 1; 3, 2 и 7, 8 ч. Диапазон ее регулирования 35—85°С. Прибор присоединяют к водопроводной сети с помощью стандартного смесителя, что позволяет подавать воду наружной температуры через кран или душ.
Рис. 17. Электроводонагреватель ЭВАН - 100/1. 25: а —устройство; б — электрическая схема; 1 — бак; 2 — кожух с теплоизоляцией; 3 — трубка смесителя; 4 -терморегулятор; 5 — смеситель; 6 — патрубок для ввода холодной воды; 7 — сигнальная лампа; 8 — шнур электропитания; 9—лимб регулятора температуры; 10 — нагреватель Быстродействующий водонагреватель ЭВБО-10/ 1, 00 мощностью 1 кВт и вместимостью 10л размещают на кухне. Время нагревания воды до температуры 85°С не более 60 мин; температуру воды изменяют терморегулятором.
Kакие применяют нагревательные провода и кабели?
Нагревательные провода, кабели, ленты относят к протяженным нагревательным устройствам. Их применяют в рассредоточенных тепловых процессах, непосредственно связанных с содержанием животных, птицы, выращиванием растений в защищенном грунте, хранением сельскохозяйственной продукции. Такие процессы относят к низкотемпературным (5-40°С), с низкой плотностью тепловых нагрузок (100-1000 Вт/м^2), выполняемым на значительных площадях в соответствии с пространственной сосредоточенностью предметов труда. Примерами подобных процессов и установок служат обогрев почвы в сооружениях защищенного грунта, электрообогреваемые полы в животноводческих и других помещениях, обогрев трубопроводов (воды, жидких кормов), воздуховодов, технологических емкостей (в процессах кормоприготовления, биотехнологии) и др. Применение для этих целей ТЭНов, отличающихся концентрированным тепловыделением и высокой металлоемкостью, или промежуточных теплоносителей (пара, горячей воды, воздуха) не всегда целесообразно по техническим, экономическим и иным причинам.
Протяженные нагреватели имеют токопроводящие жилы из материалов повышенного или высокого сопротивления и теплостойкую изоляцию. Нагревательные провода марок ПОСХВТ и ПНВСВ имеют по одной токоведущей жиле из стальной оцинкованной проволоки. Изоляция провода ПОСХВТ выполнена из поливинилхлоридного пластиката. Провод ПНВСВ имеет многослойную
изоляцию (рис. 10) и защищен от механических повреждений. Основными техническими характеристиками протяженных нагревателей служат: допустимая температура tж нагрева жилы, °С, линейное сопротивление r1, жилы, Ом/м, и допустимая линейная мощность Р1, Вт/м. Для названных проводов эти данные приведены в таблице 11.
Рис. 10. Конструкция нагревательного провода ПНВСВ (а) и нагревательных кабелей (б, в): 1 - наружная оболочка из поливинилхлоридного пластика толщиной 1 мм; 2 — экран из стальных оцинкованных проволок диаметром 0, 3 мм; 3 — оболочка из фторопластовой пленки; 4 — оболочка из поливинилхлоридного пластика; 5 — токоведущая жила
Таблица 11. Технические данные нагревательных проводов а кабелей
Параметр |
посхвт |
ПНВСВ |
ПСО |
Кабели, |
|
|
|
|
КМНС, |
|
|
|
|
КМЖ |
Диаметр жилы, мм |
1,4 |
1,2 |
4-7 |
3х1 |
Допустимая температура |
105 |
120 |
300 |
250 |
нагрева жилы, °С |
|
|
|
|
Линейное сопротивление |
0,12 |
0,16 |
0,007-0,016 |
0,11 |
жилы при допустимой |
|
|
|
|
температуре нагрева, |
|
|
|
|
Ом/м |
|
|
|
|
Допустимая линейная |
11 |
20 |
20-40 |
До 109 |
мощность, Вт/м |
|
|
|
|
Рабочее напряжение, В |
220 |
220 |
60 |
220 |
Иногда, если габаритные размеры нагревательных устройств не являются ограничивающим фактором и они питаются пониженным напряжением, нагревательные элементы изготовляют из дешевого стального оцинкованного провода типа ПСО. Примерами таких устройств служат устройства энергообогрева полов в животноводческих помещениях, почвы в парниках и теплицах. Нагревательные кабели типа КМЖ, КМНС, КНРПВ, КНРПЭВ имеют 1 - 4 нагревательные жилы из стальной оцинкованной проволоки или сплавов сопротивления, изоляцию из поливинил -хлоридного пластиката, фторопласта, кремний органической резины. Снаружи кабелей предусмотрена металлическая оболочка из свинца, меди, алюминия или мягкой нержавеющей стали, предохраняющая от воздействия агрессивных сред и механических повреждений. Гибкие ленточные электронагреватели марок ЭНГЛ-80, ЭНГЛ-180 (рис. 11) допускают температуру соответственно 85 и 180 °С, имеют по восемь нагревательных жил, расположенных в одной плоскости в изолирующей стекло волокнистой ленте. Лента с жилами заключена в пластиковую оболочку. Жилы могут соединяться параллельно, последовательно и т. д. Линейная мощность 40-100 Вт/м, линейное сопротивление 0, 5—1 Ом/м. Там, где требуется высокая интенсивность нагрева, используют теплостойкие ленточные нагреватели типа НТЛ, допускающие температуру 400-600 °С и линейную нагрузку 150-360 Вт/м, напряжение до 380 В.
Рис. 11. Нагреватель ЭНГЛ-180: а - общий вид; б - сечение; 1 — вывод; 2 — концевая заделка; 3 — токоведущий провод; 4 — герметизирующее покрытие; 5 — скобка; 6 — жилы
Какие применяются формы исполнения электрических машин по способу крепления и
монтажа?
По расположению и конструкции подшипников, а также по способу крепления и монтажа электрические машины имеют несколько форм исполнения (рис. 4).
Рис. 4. Исполнение электрических двигателей по способу крепления
Наиболее употребительной формой исполнения являются электрические машины с горизонтальным расположением вала, с двумя щитовыми подшипниками и станиной на лапах для крепления установки на горизонтальном основании, стене и потолке.
У электрических машин с фланцевым креплением может и не быть лап. В этом случае фланец располагается на станине или на подшипниковом щите.
Машины с двумя щитовыми подшипниками могут работать и в вертикальном положении. Подшипники электродвигателей для вертикальной установки рассчитаны только на массу ротора и соединительной муфты и не допускают добавочной осевой нагрузки.
Наиболее распространенные формы исполнения электродвигателей серии 4А, Да, АОЛ2 приведены на рис. 4.
Какие розетки применяют для электропроводок и как осуществить их установку?
Штепсельные соединения применяют для включения однофазных и трехфазных электрических приемников с номинальными токами до 10 А в сеть напряжением 220 В и до 25 А в сеть 380 В.
Двухполюсные штепсельные соединения выпускают с цилиндрическими или плоскими контактами, трехполюсные — только с плоскими контактами. Штепсельные соединения с плоскими контактами имеют меньшие размеры и больший срок службы.
Штепсельные соединители состоят из розеточной 1 и штепсельной 2 частей с цилиндрическими 3, плоскими 4 или комбинированными штифтовыми контактами. Между зазорами контактов должно быть определенное расстояние (19 мм для цилиндрических и 12,7 мм для плоских).
Розеточная часть комбинированных штепсельных соединителей (штепсельных розеток) позволяет подсоединять вилочную часть (вилки) как с цилиндрическими, так и плоскими контактами. Вилки, как правило, имеют неразборную. конструкцию и запрессовываются на конце шнура, который входит в комплекты бытовых приборов и аппаратов. Для повышения безопасности цилиндрические контактные шнуры неразъемных вилок спрессовывают у основания пластиком на длине 10 мм. Разборные вилки чаще всего используют для комплектации приборов небытового назначения, а также для замены неразъемных вилок, вышедших из строя.
Рис. 32. Штепсельные электрические соединения: а — розетка для открытой установки и штепсельная часть с цилиндрическими контактами; б —розетка и штепсельная часть с плоскими контактами; в ~ розетка с комбинированными штифтовыми контактами; г — трехполюсные штепсельные соединители с тремя питающими и одним заземляющим плоскими контактами; д — штепсельные соединители для открытой установки с двумя цилиндрическими питающими и одним плоским заземляющим контактом; е — штепсельные над плинтусные розетки; ж — штепсельные розетки для подключения двух вилок;
1 — розетка; 2 — штепсельная часть (вилка); 3 — цилиндрические контакты; 4 — плоские контакты; 5 — заземляющий плоский контакт; б — заземляющий контакт
Кроме двухконтактных применяют штепсельные соединители с двумя питающими и одним заземляющим 5 плоскими контактами, изготовляемыми как для открытой, так и для скрытой установки, с двумя цилиндрическими питающими и одним плоским заземляющим контактом 6 (рис. 32, д), расположенным в корпусе соединителя, трехполюсные с тремя питающими и одним заземляющим плоскими контактами (рис. 32, г).
Выпускаются штепсельные розетки (рис. 32, е) для установки над плинтусами (надплинтусные), которые в целях безопасности снабжены поворотной шайбой для подключения вилки только после ее поворота на определенный угол, что повышает их безопасность.
Нижняя часть этих розеток выполняет функции ответвительной коробки. Для установки на электротехническом плинтусе применяют специальные штепсельные розетки с плоскими контактами (рис. 32, ж), рассчитанные на одновременное подключение двух вилок. Установка штепсельных розеток в помещениях запираемых складов, содержащих горючие материалы или материалы в сгораемой упаковке, не допускается. В пожароопасных помещениях классов П-I и П-II допускается установка розеток пыленепроницаемого, а в помещениях класса П-IIа и в наружных установках класса П-III — закрытого исполнения. Во взрывоопасных помещениях розетки устанавливают вне этих помещений. Розетки, имеющие пластмассовые корпуса и предназначенные для открытой установки, в помещениях с нормальной средой устанавливают путем крепления их шурупами к деревянным розеткам толщиной 10 мм. Розетки для скрытой установки размещают в стальных или пластмассовых коробках, оставляя в них запас провода 5-6 см. Розетки крепят в коробках распорными лапками, закрутив до упора винты. Розетки ставят на высоте 0,3—0,8 м от пола в жилых помещениях, надплинтусные розетки — у плинтуса. Какие выключатели применяют для электропроводок и как осуществляется их установка?
Выключатели и переключатели служат для коммутации электрических цепей освещения и бытовых приборов. Они бывают различной конструкции: поворотные, перекидные, одно- и двухклавишные, с тяговым шнурком. Их изготовляют защищенного исполнения для открытой (рис. 33) и скрытой (рис. 34) установок и в брызгозащищенном исполнении для открытой установки. Наибольший нормальный ток выключателей 6 А (для металлокерамических контактов 10 А). Место установки выключателей зависит от их конструкции и характера помещения. Выключатели и переключатели для общего освещения устанавливают в доступных местах, обычно на стенах помещений, сбоку от дверных проемов со стороны дверной ручки на высоте 1, 5 м. Выключатели для светильников, установленных в сырых и особо сырых помещениях (в том числе и санузлах), рекомендуется выносить в смежные помещения с лучшими условиями среды.
Выключатели для светильников, установленных в кладовых, вентиляционных камерах и других нормально запираемых помещениях, как правило, устанавливают перед входом в эти помещения. В пожароопасных помещениях классов П-I и П-II допускается установка выключателей, переключателей пыленепроницаемого, а в помещениях класса П-IIа и в наружных установках класса П-III — закрытого исполнения. Во взрывоопасных помещениях выключатели устанавливают вне этих помещений. Выключатели, имеющие пластмассовые корпуса и предназначенные для открытой установки, в помещениях с нормальной средой устанавливают путем крепления их шурупами к деревянным розеткам толщиной 10 мм. Выключатели для скрытой установки размещают в стальных или пластмассовых коробках, оставляя в них запас провода 5—6 см. Выключатели крепят в коробках распорными лапками, закрутив до упора винты. Одноклавишные выключатели устанавливают таким образом, чтобы контакты для подключения проводов находились снизу. Выключатели герметического исполнения при открытой установке крепят на стене или на стальных скобах.
Рис. 34. Выключатели для скрытой установки: а, б, в, д - клавишные сдвоенные; г - одинарный; е - строенный Какие коробки применяют для электропроводок? Коробки применяют для изоляции мест соединений, ответвлений проводов, кабелей осветительных и силовых сетей, а также для встраивания и крепления внутри них выключателей, переключателей и штепсельных розеток при скрытой проводке. Для открытых проводок применяют коробки защищенного, пыленепроницаемого и брызгозащищенного исполнения, а для скрытых проводок — защищенного исполнения. Для ответвлений и соединений проложенных открыто проводов марок АПН, ППВ, АППВ, АТПРФ сечением до 2, 5 мм^2 применяют пластмассовые коробки У419, У420 защищенного исполнения. Соединение и ответвление кабелей марок ВРГ, АВРГ, СРГ, АСРГ, АНРГ и др. сечением до 2х4 мм^2, прокладываемых открыто (без труб) во взрывоопасных помещениях и наружных установках, производят в пластмассовых коробках У409 пыленепроницаемого исполнения.
Для проводок, выполненных в сырых и пыльных помещениях кабелем с резиновой или пластмассовой изоляцией, и проводок в открыто проложенных неметаллических трубах с жилами сечением до 6 мм^2 используют пластмассовые коробки КОР-73, КОР-74 в брызгозащищенном исполнении. Ответвления от силовой и осветительной магистрали, выполненной кабелем или проводами, закрепленными на проволоке диаметром до 8 мм, а также специальными тросовыми проводами сечением до 10 мм^2, производят в металлических коробках У245, до 35 мм^2 - У246. Ответвления и соединения проводов марок АППВ, АППВС, ППВ, ППВС, АПН, АПВ и ПВ, проложенных скрыто, выполняют в пластмассовых коробках У191, У194 и У197, У198, КСТ-15, имеющих стальной корпус и пластмассовую крышку. Для установки выключателей и штепсельных розеток применяют стальные коробки У196 цилиндрической и КП-4 - прямоугольной формы. Для выполнения соединения жил проводов и кабелей, для подключения установочной аппаратуры в коробках оставляют концы длиной 5—6 см.
Какие типов выпускают электрические холодильники?
Промышленность выпускает домашние холодильники двух типов: компрессионные и абсорбционные. Наиболее распространены компрессионные холодильники с автоматическим регулированием, расходующие почти в 3 раза меньше электроэнергии, чем абсорбционные. В зависимости от вместимости эти холодильники за год потребляют 250—450 кВт•ч, а абсорбционные 500— 1400 кВт • ч электроэнергии.
Холодильный агрегат компрессионного действия (рис.20,в) состоит из компрессора 32, испарителя 26, конденсатора 27 и регулировочного вентиля, которые соединены между собой трубопроводами и образуют замкнутую герметизированную систему, заполненную хладагентом. Компрессор агрегата приводится в действие электродвигателем и служит для отсасывания паров хладагента из испарителя, благодаря чему в испарителе поддерживается низкое давление. Кроме того, в компрессоре происходит сжатие этих паров до давления, при котором они в конденсаторе превращаются в жидкость после охлаждения. Испаритель и конденсатор являются теплообменными частями холодильного агрегата. Через их поверхности осуществляется теплообмен между охлажденным объектом и хладагентом, с одной стороны, и между хладагентом и окружающей средой — с другой. Испаритель и конденсатор соединены регулирующим вентилем с малым проходным сечением, благодаря чему при работе компрессора в ис-
Рис. 20. Электрический холодильник М-130: а — вид спереди; б — вид сзади; в — схема холодильника компрессионного действия. А — холодильная камера; В — морозильная камера; 1 — лампа освещения; 2 — приборы управления и сигнализации; 3 — полка;
4 - обрамление; 5 — емкость с крышкой; 6 — вкладыш для яиц; 7 — барьер -полка; 8 — панель внутренняя; 9 — барьер для фиксации бутылок; 10 — пиктограмма; 11 — полка; 12 — корзина; 13 — указатель; 14 — кронштейн петли нижней; 15 — кронштейн; 16 — шторка; 17 — опора с гайкой; 18 — болт; 19 — ролик; 20 — лопатка; 21 — форма для льда; 22 — аккумулятор холода; 23 — пруток; 24 — сосуд; 25 — полка-стекло; 26 — испаритель; В. — датчик-реле температуры; В — датчик-реле температуры; R1 нагреватель; С — конденсатор; Н1 —лампа
парителе всегда создается разрежение, а в конденсаторе — повышенное давление. Электрическая энергия, затрачиваемая на получение холода, расходуется электродвигателем для привода компрессора.
У абсорбционных холодильников диффузионного действия два рабочих вещества: абсорбент (вода) и хладагент (аммиак). Температуры кипения абсорбента и хладагента при атмосферном давлении разные (100 и-35°С). Хладагент хорошо растворяется в абсорбенте (при нормальном давлении и температуре 20°С в 100 г воды растворяется 72 г аммиака). При включении холодильника в сеть концентрированный раствор аммиака нагревается и испаряется, потребляя теплоту холодильной камеры.
Абсорбционные холодильники «Иней» (114 дм^3) и «Кристалл-9» (170 дм^3) бесшумны в работе, надежны в эксплуатации, сравнительно несложны в изготовлении и ремонте.
Какие выпускаются машины постоянного тока?
Промышленность выпускает ряд серий машин постоянного тока. Основной является единая серия П, состоящая из трех групп машин: первая -мощностью от 0, 13 до 200 кВт; вторая - от 200 до 1400 кВт и третья - свыше 1400 кВт.
Первая группа охватывает 11 габаритов по наружному диаметру якоря. В каждом габарите имеется по две длины сердечника, т. е. серия имеет 22 типоразмера (табл. 7).
Основное исполнение машин серии П - брызгозащищенное. Выпускаются машины и с закрытым исполнением. Машины серии П бывают с одним или двумя свободными концами вала, каждый из которых может передавать номинальный вращающий момент. Машины серии П имеют несколько модификаций.
ПБ — машина закрытого исполнения с естественным охлаждением; ПВ, ПВА - возбудитель;
ПО - обдуваемая; ПР - радиаторная.
Все машины серии П изготовляются без компенсационной обмотки, двигатели имеют легкую последовательную стабилизирующую обмотку возбуждения. Номинальное напряжение двигателей 110 и 220 В, а по особому заказу могут быть изготовлены для сети напряжением 440 В.
По способу расположения вала эти машины могут быть горизонтальными и вертикальными.
При вертикальном варианте исполнения свободный конец вала направлен вниз.
Возбуждение у машин серии П шунтовое, независимое и компаундное. В последнее время разработана новая серия (2П) двигателей постоянно-
Таблица 7. Шкала мощностей машин серии П первой группы
Тип |
Частота вращения, об/мин |
Масса, кг |
Диамер якоря, мм |
Длина якоря, мм |
||||
600 |
750 |
1000 |
1500 |
3000 |
||||
МОЩНОСТЬ, кВт |
||||||||
П11 |
- |
- |
0,13 |
0,3 |
0,7 |
18 |
83 |
50 |
П12 |
- |
- |
0,2 |
0,45 |
1,0 |
23 |
|
75 |
П21 |
- |
0,2 |
0,3 |
0,7 |
1,5 |
35 |
106,0 |
55 |
П22 |
. |
0,3 |
0,45 |
1,0 |
2,2 |
41 |
|
80 |
П31 |
. |
0,45 |
0,7 |
1,5 |
3,2 |
53 |
120 |
75 |
П32 |
- |
0,7 |
1,0 |
2,2 |
4,5 |
62 |
|
110 |
П41 |
- |
1,0 |
1,5 |
3,2 |
6,0 |
72 |
138 |
85 |
П42 |
- |
1,5 |
2,2 |
4,5 |
8,0 |
88 |
|
115 |
П51 |
- |
2,2 |
3,2 |
6 |
11 |
105 |
162 |
100 |
П52 |
- |
3,2 |
4,5 |
8 |
14 |
127 |
|
140 |
П61 |
- |
4,5 |
6 |
11 |
19 |
163 |
195 |
105 |
П62 |
- |
6 |
8 |
14 |
25 |
195 |
|
140 |
П71 |
- |
8 |
11 |
19 |
32 |
250 |
210 |
125 |
П72 |
- |
11 |
14 |
25 |
42 |
290 |
|
165 |
П81 |
- |
14 |
19 |
32 |
- |
330 |
245 |
135 |
Примечание. Буквы и цифры, обозначающие тип машин, расшифровываются следующим образом: П — машина постоянного тока; первое после буквы однозначное или двузначное число - порядковый номер габарита; последняя цифра - порядковый номер длины сердечника. го тока. У двигателей этой серии мощность при одном и том же значении высоты оси вращения увеличена в 3 — 5 раз; диапазон регулирования частоты вращения увеличен в среднем в 1, 6 раза; механическая инерционность якоря уменьшена на 40 — 60 %; обеспечена устойчивая коммутация; удвоен срок службы машин. Двигатели серии 2П изготавливаются с номинальными частотами вращения 500, 600, 750,1000, 1500, 2200 и 3000 об/мин и номинальными напряжениями 110, 220 В при мощности до 7,5 кВт и 220, 440 В при мощности более 7,5 кВт. Генераторы изготовляются с номинальными частотами вращения 1000, 1500 и 3000 об/мин и номинальными напряжениями 115, 230 В при мощности до 7,5 кВт и 230, 460 В при мощности более 7,5 кВт. Машины по ГОСТ 12080-66 изготовляются с одним концом вала. По заказу потребителя могут быть изготовлены без тахогенератора с двумя концами вала. В зависимости от высоты оси вращения и способа охлаждения есть несколько разновидностей машин постоянного тока (табл.8). Средний срок службы машин серии 2П — 12 лет, средний ресурс — 30 000 ч. Таблица 8. Обозначение машин постоянного тока в зависимости от их исполнения
Высота оси вращения, мм | Исполнение в зависимости от способа зашиты и охлаждения | Обозначение исполнения | Степень защиты |
От 90 до 315 | Защищенное с самовентиляцией | Н | IP22 |
От 132 до 315 | Защищенное с независимой вентиляцией от постороннего вентилятора | Ф | IP22 |
От 132 до 200 | Закрытое обдуваемое от постороннего вентилятора | 0 | IP44 |
От 90 до 200 | Закрытое с естественным охлаждением | Б | IP44 |
Какой источник света выбрать для освещения помещений?
Рис. 24. Лампа накаливания:
1 — стеклянная колба; 2 — вольфрамовая нить; 3 — крючки;
4— электроды; 5 — центральная часть цоколя; 6 — резьба цоколя
Лампы накаливания — самые массовые источники оптического излучения. Это объясняется сравнительной простотой их устройства и надежностью в эксплуатации, возможностью непосредственного включения в сеть, отработанностью технологии и дешевизной. Несмотря на многообразие типоразмеров ламп накаливания, отличающихся номинальным напряжением, мощностью и родом тока, все они объединены единым физическим принципом получения видимого излучения (нагрев электрическим током вольфрамовой нити до температуры 2200-2800°С) и сходством применяемых во всех конструкциях основных составляющих элементов (рис. 24).
Лампы накаливания отличаются между собой электрическими, светотехническими и эксплуатационными характеристиками. Номинальный срок службы ламп накаливания (средняя продолжительность горения) достигает 1000 часов.
Рис.25. Люминесцентная трубчатая лампа низкого давления: 1 — стеклянная трубка; 2 — слой люминофора;
3 — электроды с вольфрамовой биспиральной нитью; 4 — стеклянные ножки; 5 — цоколь;
6 — контактные штыри
Обозначение ламп накаливания общего назначения состоит из букв (от 1 до 4): В — вакуумная, Г — газонаполненная (аргон 86% и азот 14% ); Б — биспиральная; БК — биспиральная с криптоновым ( криптон 86% и азот 14% ) наполнителем, МТ — с матированной колбой, МЛ — в колбе молочного цвета, О—с опаловой колбой и т.д. После буквенного обозначения следуют цифры, показывающие диапазон напряжения питания лампы в вольтах, на который рассчитана лампа, через дефис - номинальная мощность лампы в ваттах и далее порядковый номер разработки. Пример условного обозначения: Г 220-230-100 — газонаполненная на диапазон напряжений 220—230 В, номинальной мощностью 100 Вт.
Люминесцентные лампы низкого давления имеют более высокую, чем у ламп накаливания, световую отдачу, улучшенный спектральный состав излучения, значительно больший срок службы.
Люминесцентная лампа (рис.25) — это длинная стеклянная трубка (колба), внутренняя поверхность которой покрыта слоем люминофора.
Люминофор преобразует ультрафиолетовое излучение газового разряда в видимое. Люминесцентные лампы различают пo форме и размерам колбы, мощности и спектральному составу или цветности излучения. Выпускаемые промышленностью люминесцентные лампы типов ЛБ, ЛД, ЛТБ и ЛХБ, ЛЕ, ЛБЕ, ЛХЕ и др. отличаются только составом люминофора, а следовательно, и спектральным составом излучения. Буквы, входящие в наименование этих типов ламп, означают: Л—люминесцентная, Б—белая, Д—дневная, ТБ—тепло-белая, ХБ—холодно-белая, Е—естественная, БЕ— белая естественная, ХЕ—холодно-естественная, УФ—ультрафиолетовая, Ф—фотосинтетическая, Р—рефлекторная, У-И-образная, К— кольцевая, А—амальгамная. Среди ламп указанных цветностей различают еще лампы с улучшенным спектральным составом излучения, обеспечивающим хорошую цветопередачу освещаемых предметов. В обозначении этих ламп после букв, характеризующих цветность излучения, добавляют букву Ц (ЛДЦ, ЛХБЦ, ЛЕЦ и т.д.). Сразу после буквенного обозначения следуют цифры, указывающие номинальную мощность лампы в ваттах и через тире — порядковый номер разработки. Люминесцентные лампы выпускают на мощности: 6, 9, 11, 15, 18, 20, 30, 36, 40, 58, 65, 80, 125 и 150 Вт. Средняя продолжительность горения люминесцентных ламп не менее 12000 ч. Оптимальными условиями работы ламп являются t= 18—25°С и относительная влажность воздуха не более 70 %. В условиях низкой температуры и влажности они плохо «загораются» и выходят из строя. Как включить электрические лампы в электрическую сеть? Лампы накаливания включают в сеть между фазным и нулевым проводами. К верхнему контакту патрона подсоединяют фазный провод, а к боковой резьбе — нулевой. Выключатель устанавливают в рассечку фазного провода.
Рис. 26. Схемы включения электрических ламп накаливания: а — выключателем однополюсным; б — выключателем однополюсным на две цепи; в — управление из двух мест при помощи переключателей; EL1, EL2 — лампы накаливания; QS — выключатель; QS1 — выключатель сдвоенный; SA1, SA2 — переключатели В зависимости от конструкции переключателя можно различным образом управлять работой ламп: включать и выключать их одновременно или поочередно и т.
п., для включения и отключения группы ламп из двух разных мест можно использовать переключатель (рис.26). Kак включить простейший светильник с люминесцентной лампой? Включение люминесцентных ламп более сложно, так как требуется пробить газовый промежуток между электродами и зажечь лампу. Возникающий газовый разряд необходимо стабилизировать, иначе ток в лампе возрастет выше допустимого и перегорят электроды. Для зажигания люминесцентной лампы и ее нормальной работы требуется стартер (зажигатель), дроссель (ПРА — пускорегулирующий аппарат), конденсаторы. Стартер служит для автоматического включения и выключения предварительного накала электродов. Дроссель, представляющий собой
Рис.27. Схемы включения люминесцентных ламп: а-стартерная с дросселем; б—с лампой накаливания в качестве балласта; EL1 — лампа люминесцентная; КК — стартер; С — конденсатор; LL — дроссель; EL2 — лампа накаливания обмотку, намотанную на сердечник из листовой электротехнической стали, облегчает зажигание лампы, а также ограничивает ток и обеспечивает ее устойчивую работу. На рис. 27, а приведена простейшая схема стартерного зажигания люминесцентной лампы, включенной в сеть 127—220 В. При этом следует помнить, что стартеры включаются параллельно лампе, а дроссели — последовательно с лампой. Обозначение стартера включает: С — стартер; 20 или 80 — предельные значения мощности люминесцентных ламп, для которых предназначен стартер; 65 — мощность лампы, для которой предназначен стартер; 127 или 220 — номинальное напряжение стартера. Например, 20С-127 - стартер для люминесцентных ламп предельной мощностью 20 Вт включительно, то есть 4, 6, 8, 15, 18 и 20 Вт; 65С-220 — стартер для люминесцентных ламп мощностью 65 Вт; 80С-220 — стартер для люминесцентных ламп предельной мощностью 80 Вт включительно, за исключением ламп мощностью 65 Вт, то есть 13, 30, 36, 58 и 80 Вт. Каждому ПРА присваивается шифр условного обозначения, который характеризует его назначение, устройство, исполнение и параметры. Например, 2УБИ-40/220-АВПП-900 ГОСТ 16809-71.
Двухламповый индукционный стартерный аппарат с предварительным подогревом электродов к лампам мощностью 40 Вт для включения в однофазную сеть 220 В, со сдвигом фаз между токами ламп встроенного исполнения, с особо пониженным уровнем шума, номер разработки — 900. Зажигание и горение люминесцентной лампы возможно только в том случае, если мощность лампы соответствует мощности ПРА. Вместо дросселя можно использовать лампу накаливания, включив ее по схеме, показанной на рис. 27, б. Для надежного зажигания люминесцентной лампы к ее штырю присоединяют металлический проводник в виде достаточно широкой металлической полосы (фольги), расположенной по поверхности лампы. Полосу присоединяют к одному из выводов электродов. Можно также заземлять полосу (в этом случае ее нельзя соединять с выводами лампы) или проложить вдоль самой лампы один из монтажных токоведущих проводов и закрепить его по концам колбы проволочными хомутиками. После сборки схемы в светильник устанавливают лампу и стартер. Штырьки обоих цоколей лампы одновременно вставляют до отказа в прорези, находящиеся в верхней части патрона, и поворачивают лампу на 90°. Эту операцию следует проводить осторожно во избежание отрыва колбы от цоколя. Стартер вставляют в предназначенное для него гнездо стартеродержателя и поворачивают по часовой стрелке до упора. Какие лампы применяют для освещения открытых площадок?
Рис.28. Лампа ДРЛ: 1—колба; 2—слой люминофора; 3— кварцевая трубка (горелка); 4—два основных вольфрамовых электрода; 5—два дополнительных (поджигающих) электрода; 6—резистор; 7— цоколь Лампы типа ДРЛ (рис.28) — ртутные люминесцентные лампы высокого давления — широко распространены для освещения производственных территорий, строительных площадок, проезжих частей дорог, а также промышленных предприятий, не требующего высокого качества цветопередачи. Промышленность выпускает восемь типоразмеров ламп ДРЛ мощностью 50, 80, 125, 250, 400, 700, 1000, 2000 Вт для включения в сеть переменного тока номинальным напряжением 220 и 380 В.На рис.29 приведена схема зажигания лампы ДРЛ. Металлогалогенные лампы типа ДРИ по конструкции в общих чертах подобны двухэлектродным лампам типа ДРЛ. В обозначении ламп ДРИ буквы обозначают: Д—дуговая, Р—ртутная, И—с излучающими добавками, 3—зеркальная. Первое чис-
Рис. 29. Схема включения ламп ДРЛ: FU — предохранитель; С — конденсатор; EL — лампа ДРЛ; LL — дроссель ло после буквенного обозначения указывает номинальную мощность в ваттах, а второе после дефиса — номер разработки или модификации. Промышленность изготавливает лампы типа ДРИ шести типоразмеров: на 250, 400, 700, 1000, 2000, 3500 Вт. Средняя продолжительность горения 0,6 — 10 тыс. часов.
Какой применяют электрический нагревательный инструмент?
Электропаяльники разделяют на бытовые (напряжение питания преимущественно 220 В) и промышленные (напряжение питания не выше 42 В), непрерывного и периодического нагрева.
Электропаяльник непрерывного нагрева имеет массивный паяльный стержень, аккумулирующий теплоту и отдающий ее в процессе пайки деталям. Нагревательная спираль намотана на металлическую трубку, изолированную слоем слюдопласта.
Электропаяльник периодического нагрева (рис. 19) благодаря малой массе паяльного стержня нагревается до рабочей температуры за несколько секунд. Паяльный стержень выполнен в виде петли из толстой проволоки, которую включают в разрыв короткозамкнутой обмотки трансформатора, размещенного в корпусе паяльника.
Рис. 19.
Электропаяльник:
1 — трансформатор;
2 - корпус; 3 - шина;
4 — паяльный стержень; 5 — сигнальная лампа; 6 — выключатель; 7 — соединительный шнур
По конструкции корпуса различают пистолетные, торцевые и молотковые электропаяльники. Молотковый предназначен для пайки массивных деталей, масса его стержня 1 кг.
По назначению и мощности паяльники подразделяют на радиомонтажные маломощные (10—26 кВт), электротехнические средней мощности (40— 65 кВт) и медницкие мощные (100 Вт и выше). Электроприборы для сваривания полиэтиленовой пленки бывают периодического и непрерывного действия.
Прибор «Молния-1» периодического действия состоит из понижающего трансформатора, к вторичной цепи которого подключена нагревающая нихромовая лента, и ручки-рычага с подушкой из губчатой резины. Оба элемента защищены фторопластовой пленкой. Между ними зажимают свариваемую пленку.
Прибор «Молния-2» непрерывного действия представляет собой ручку с размещенной на ней спиралью. На конце шарнирно закреплен полозок, нагревающийся от спирали и сваривающий пленку.